ORACLE

Oracle® Retail Integration Bus
Service-Oriented Architecture Enabler Tool Guide
Release 19.0

F22952-01

January 2020

Oracle Retail Service-Oriented Architecture Enabler Tool Guide, Release 19.0
F22952-01

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameshwaran

Contributing Author: Alex Meske

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR

Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us YOUr COMMENTScoo.cooiiiiicee s iX
PPEIACE ...ttt Xi
AUAIEIICE ...ttt et et e e eta e te e aa e be e st e beesseeteesbesbeessesseesbesseesseeseesbesseenteereenaesreensenres Xi
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiiii e Xi
Related DOCUIMENTEScceiuiriiiiieieieietetettetee et e st st et e s et et esaeseeseeseasassassesessessessassessassassassnsessensansenes Xi
CUSTOMET SUPPOTIt ...vtiitietiictc e Xii
Review Patch DoCUMENTATIONcvicvieiieiiciiiecieete ettt ettt et et ae e sbe et e be e e e steersesesseenneenas Xii
Improved Process for Oracle Retail Documentation Corrections..........c.ccceeueueueueerevreeernnerenreneenes Xii
Oracle Retail Documentation on the Oracle Technology Networkccoooeiiiiiiiiiiiciine xiii
CONVEINTIONS ...vvieivieiieiiieeie et esteeteesteessteesteessteaseessseassaeassaasseesssaassaensseasseessesssaesseasseesseensaessseessesssenssesnns Xiii

1 Introduction

Major Features of the RSE T0O]ccccccoviiiiiiiiiiiiiiin e 1-1
COMCEPLS ...ttt ettt sttt st a et 1-3
WAL IS @ SEIVICET? ..ottt ettt ettt ettt ettt b bbbt bbb bbb e s s nnenis 1-3
Oracle Fusion Reference Architecture (OFRA).......ccoviririirinirieirieereesieeeeseeeseee e 1-3
Where D0es RSE Fit? ..ottt s 1-5
Technical Specifications..............ccccovvviiiiiiiiiiii s 1-5
Supported Operating SYStEMScccccuiiiiiiiiriiiiiiiiiiiiicc s 1-5

2 Installation and Basic Setup

Determining the Type of Installation..............cccccooiiiiiiiiiii e 2-1
Installing as a Standalone Application ..., 2-1
Installation as a Web Application in Oracle WebLogicccccocouviiiiiiiiniiiiiiiic, 2-2
PrerequUiSItes......cooiiiiiiiiiiiiicicic e 2-2
Deploy the Retail Service-Oriented Architecture Enabler ..., 2-2
Verify the Retail Service-Oriented Architecture Enabler ..., 2-3
Redeploy the APPLCAtIONcccuiiiiiiiiiiiiiiicicic e 2-4

3 Tool Inputs and Outputs

TOOL INPULS ... s sttt 3-1
ServiceProviderDefLibrary.Xml ... 3-1
RestServiceProviderDefLibrary. Xml...........cccccooiiiiiiiiiiiniiiiiins 3-1

XSDs and retail-public-payload-java-beans.jarcccoveiiiiiiiiiniii, 3-1

PL/SQL Oracle ObJectsccoiiiiiiiiiiiiiiiiiiiinic s 3-2
TWSDIL ..ottt ettt et s e st b et bbb et b et be bbbt ene st ene 3-2
TOOL OULPULS ... 3-2
PL/SQL Provider WED SEIVICEcoouieeuiieeeceieeceeeetee ettt et eteeeveeeaeeeeveeeeeeeveeesseeseessaeesssenseeens 3-2
PL/SQL Consumer using Webservice Call-Out UtItYcccocciiiiiiiiiiiiccceccceeenes 3-3
PL/SQL CONSUMET WED SEIVICE ...ooovviiirieriieiictieeiecctee et et et eeteeeteeeveeetaesreesveesasseseesaseenssensneens 3-5
Java EE Provider WED SEIVICE........c.ciiiiriiieieieetetteie ettt ettt sttt e 3-5
Java EE Consumer WED SEIVICE.......ccccvrcverierierieeierieetieieeeestesseesesstessesseessesssessesssessessssssessessesseenes 3-6

4 Command Line Interface

SeVICE PrOVIAETcoeviiiiiii e 4-1
ATZUIMEIES. ...ttt 4-1
COMMANGS ..o 4-2
Service Definition Library XML Filec.ccccccciiiiiiiiiiiicecereeeeeeeeeeeeeeeee e 4-2
Service Definition Library XML File for Restful Web Servicesccccoovreiiiiiiiiiiniine, 4-2
Custom Business Objects Jar File...........cooiiiii e 4-3
Localization Business Object Jar File ... 4-3
Service Implementation Jar File ... 4-3

Service COMSUIMETcoouiviiiiiiciic st a et a s 4-3
ATGUIMENES. ...t 4-3
COMMEANGS ...oviiiiiciec s 4-4

User Interface Usage

SerViCe PrOVIAET ... s 5-2
Service Definition Library XML Filecccoooiiiiiiii 5-2
Service Definition Library XML File for Restful web servicescccccceeurvvvrirnnnnnnence. 5-2
Custom Business Objects Jar File ..., 5-3
Localization Business Object Jar File...........ccccooiiiiii 5-3
Service Implementation Jar File ... 5-3

SeIVICE COMSUIMETooiiiiiitiiitct ittt ettt s 5-3

HEIP ..o 5-4

6 Service Definition Library XML File

vi

Schema Definitionccccooiiiiiiiiiiiiiccec et 6-1
5erviceProviderDefLibIary ... 6-1
ATTIDULES .. 6-1
ELEMENES ...ttt 6-2
Managing the Service Definition Library XML Fileccccccccooiiiinninniccs 6-4
Creating the File ... 6-4
Changing the Version of the File ... 6-4
Changing the appName Attribute in the File ... 6-4
Renaming a Service or Operation Name in the File.........cccocoooi 6-5
Adding a New Service or New Operation to the File..........ccccoiiiiiiiiiiiis 6-5
Deleting a Service or Deleting Operations from the File..........cccccooiviiiiiiiiiiiiicenes 6-7
Defining New Exceptions to the Operations.............cccoceevviiiiiinininnnie, 6-7

Using Different Versions of Objects as Input/Output to an Operationcccceevvvvvvininicnee. 6-7

7 Service Definition Library XML File for Restful services

Schema Definitioncccoccveiiiiiiieiececeeee ettt et e b e s ree b e ssaesaessaesbeessesseessansaessenseenes 7-1
ServiceProviderDefLibrary ... 7-4
Validation rules for a service definition xml for RESTful web services.........c.c.ccoevvrvevvrvrneennnns 7-4
Rules for Application Name Field ..., 7-4
Rules for Service Name FIeldc.ccoooiiiiiiiiiieieeeeeeeee ettt 7-4
Rules for Service OPerationsc.ccccceeuerieiriiicinieieeeeeeereeeeeereeeee s 7-4
Rules fOr Path Parameters.......c.cccveeuieieriieieriecteiietesreettesteetesteeaesseesaesseessesseessesseessessesssessesssessensees 7-7
Rules for Query Parametersccocioiiiiiiiiiicieece e 7-8
RULES fOT LNKS ...veutitieeieeieiieiietieteietet ettt ettt e et sbes e s s e st esaesaeseasaesessessessessessessessessassasansensensens 7-8
Rules for RelatedT0 €lemMeENt..........cocveviiieiieiieieeieieceteteete ettt ae st ess e seesse e esaesseennas 7-8
JSON OULPUL ...t 7-8
ReESPONSE COUES......cviiiiiiciicec e 7-8

8 Web Service Standards and Conventions

Web Service NAMUNG.........cccoiiiiiiiiiiii e 8-1
Web Service Versioning ... 8-3

9 Creating the Java EE Implementation Jar

Step 1: Generate Web Services with Default Implementation.................ccoooiiiinnn, 9-1
Step 2: Implement Interfaces ... 9-1
Step 3: Upload the Jar ... 9-1

10 Implementation Guidelines

Important Note About this Chaptercoccoeiiiiniiieeeeee e 10-1
PL/SQL Service Consumer Implementation Notescccocoviiiiiiiiiiiiis 10-1
PL/SQL Provider Service Implementation Notes ... 10-2
Java EE Service Consumer Implementation NOtes..............cccoceeueirrineenenencncneceeeeeeene 10-3
Sample Client Code ... 10-4
Java EE Service Provider Implementation Notes...............ccoccoooiiiiiiie, 10-5
Use Case 1: Complete the Generator Provided Stub Code Implementation.......................... 10-5
Use Case 2: Provide a Custom impl jar to the RSE ToOl..........cccooiiiiiiiiiiiicccie, 10-5
Use Case 3: Package the Generated Service Classes in an Existing Application................... 10-6
Web Service Call as a Remote EJB Call.........cccccoooioiiiinieiieieceee et 10-6
Prere@qUISITeS.....cciiiicicietcee s 10-6
PrOCEAULE ...ttt st 10-7
COde DESCIIPHON. ...ttt 10-8
Web Service Call as a POJO Call.........cccoeoriiiriinieiieiieiiictnietnietnteenreeenseesresesreeesesesesesessesennenes 10-8
PrOCEAULE ...ttt st s 10-9
Sample Code for POJO INVOCAIONc.cueviuiieiiiiiiiiiiririeieicierececreree s 10-10
Deploying the Web Serviceccccoovviiiiiiiii 10-11
Redeploy the Service APPLCAtIONccccuviviviiiiiiiiiiiniiiii e 10-12
Verify the Service Application Installation Using the Administration Console.................. 10-12

vii

11

12

A

Cc

viii

Creating a JDBC Data SOUICe.............coooiiiiiiiiic s 10-12

Implementation Guidelines

Important Note About this CRAPLErcccoecinieiniieinircccteee et 11-1
PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes...................... 11-1
Install Oracle JVM Web Services Call-Out Utlity........cocovuveerviriiiininiiircccreeececeeeeees 11-1
Verity environment variables and export if needed.........c..cooooeeiiiiii 11-2

Create OJVMWOCU_INSTALL USETccvuiuiiiiiiiiiiiniiieissisiceisiiicessesseesssssssesessseans 11-2

INSTAll OJVIMWCU ...ttt ettt ettt ettt et sesbessessessesaessesssssasessensessens 11-2

Grant permission and create SYNONYMScceueuiiurieiiiicicie et 11-4

Grant permission to the USer ... 11-4

Load RBO Oracle Objects into the databasecccccoeeueuieiivniiicrciccrceccreeenes 11-5

Create activity logging table...........ccoouoiiiiii 11-5

Load WebService java code into databasecccouoiiiiiiiiiii, 11-6

Load WebService plsql code into database..........c.ccccoeuvuvriiiviiiiinniiiiiicccccreceeeeees 11-6
PL/SQL Provider Service Implementation Notescccccoviiiniiniic 11-6
Java EE Service Provider Implementation Notes................cccccocoviiiiiiniiiiiiii 11-7
Use Case 1: Complete the Generator Provided Stub Code Implementation.......................... 11-8
Use Case 2: Provide a Custom impl jar to the RSE ToOL........ccccccovvvviiiiiiiiiiiiiii, 11-8
Use Case 3: Package the Generated Service Classes in an Existing Application................... 11-8
Deploying the Web Service ... 11-9
Creating a JDBC Data Source in WebLOGic...........c.cccoooiiiiiiiiiiiiccce 11-9

Web Services Security Setup Guidelines

CLIENt-S1de SELUP -...ceveviieiiieiiieee ettt sttt st naene e 12-2
Java Clent SETUP ..o 12-2
PL/SQL Client Setup for WS with Call-OUtccccceuiiiiiiiiiiiccececeecceeeeeneenenens 12-3
PL/SQL CHENt SEEUPc.cviviiniiiiiiciiiiiieiiet s 12-5

Appendix: Installer Screens

Installation as a Web Application in Oracle WebLogic............cccooeuiiiniiiinniiiiccce, A-1
Deploy the Retail SOA Enabler Application........c.cccccccucuiiiiiiiiiiiiiiiiiiiiiciiiicccccceeeeeeaes A-1
Creating the rSe AAMINGTIOUPc.cuiuimiiiiiiiiiiiiiicceee e A-7
Verify the Retail SOA Enabler Web Application............cccooeieiiiiiiiiiiiiiicccccnn A-7
Redeploy the APPLCAtiONccceuiiiiiiiiiiiiiiiic s A-10

Appendix: Sample ServiceProviderDefLibrary.xml
ServiceProviderDefLibrary.Xml............cccoooiiiiiiiiiiiiicccceee e B-1

Appendix: Creating a JDBC Data Source

PIOCEAULR ...ttt e ettt e ae e eat e e eaeeesaeateeenseenteesaseenseessesensesesseenteessseenneanes C-1

Send Us Your Comments

Oracle Retail Service-Oriented Architecture Enabler Tool Guide, Release 19.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Audience

Preface

The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide provides
information about the tool as well as installation instructions.

The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide is written for the
following audience:

» Database administrators (DBA)
= System analysts and designers

= Integrators and implementation staff

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Retail
documentation set:

» Oracle Retail Integration Cloud Service Release Notes

» Oracle Retail Integration Cloud Service Action List

» Oracle Retail Integration Cloud Services Administration Guide
» Oracle Retail Integration Bus Implementation Guide

» Oracle Retail Integration Bus Installation Guide

» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Hospital Administration Guide

xi

» Oracle Retail Integration Bus Support Tools Guide

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

» Oracle Retail Integration Bus Java Messaging Service Console Guide
» Oracle Retail Service Backbone Developers Guide

» Oracle Retail Service Backbone Implementation Guide

» Oracle Retail Integration Console (RIC) User Guide

» Oracle Retail Service Backbone Security Guide

» Oracle Retail Bulk Data Integration Implementation Guide

» Oracle Retail Bulk Data Integration Installation Guide

» Oracle Retail Financial Integration for Oracle Retail Merchandise Operations
Management and Oracle Financials Implementation Guide

» Oracle Retail Financial Integration for Oracle Retail Merchandise Operations
Management and Oracle Financials Installation Guide

» Oracle Retail Job Orchestration and Scheduler Implementation Guide

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

s Product version and program/module name

= Functional and technical description of the problem (include business impact)
» Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 19.0.000 or 19.0.0) or a later patch release (for example, 19.0.030 or 19.0.3). If
you are installing the base release, additional patch, and bundled hot fix releases, read
the documentation for all releases that have occurred since the base release before you
begin installation. Documentation for patch and bundled hot fix releases can contain
critical information related to the base release, as well as information about code
changes since the base release.

Improved Process for Oracle Retail Documentation Corrections

Xii

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail

document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network

Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
m

(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Xiv

1

Introduction

The purpose of the Retail Service-Oriented Architecture Enabler (RSE) tool is to
provide a standard, consistent way to develop Web services for PL/SQL and Java EE
applications. Because it allows them to expose their business logic, the focus of
development can be on the business logic code, not on the Web service infrastructure.

The RSE tool creates Web service provider end-points, consumer clients for Web
service providers, and templates for interfacing with PL/SQL APIs and Java EE APIs.

The tool also produces design time and run time artifacts. It works in conjunction with
another RTG tool, the Retail Functional Artifact Generator.

Note: For more information on the tool, see the Oracle Retail
Functional Artifact Generator Guide.

Major Features of the RSE Tool

The following is a list of the essential features of the RSE tool:

The RSE tool is standards based.

The RSE tool supports SOAP and RESTful based web services.
SOAP based web services:

All services are generated in a consistent and standard manner.

All services are SOAP /HTTP based.

All services comply with the JAX-WS specification.

All services are WS-Addressing enabled.

WS-Security can be plugged into these Web services without any code change.
All Web services are Document Literal Wrapped.

Generated services are capable of using SOAP headers.

RESTful based web services:

REST is an architectural style, not a standard.

The services comply with the JAX-RS specification.

The services support all HTTP methods.

WS-Security can be plugged into these Web services without any code change.

The RSE tool generates technology-specific API templates for PL/SQL APIs and
Java EE.

Introduction 1-1

Major Features of the RSE Tool

- Itsupports PL/SQL as a Web service provider.

- PL/SQL code can directly call any third party SOAP/HTTP based Web
services.

- It supports java code as a Web service provider.
- It supports java code as a Web service consumer.

= Generation by the RSE tool is controlled by a single Service Definition Library
XML file.

— By creating Web services from the high level abstraction in the Service
Definition Library, top down Web services development is supported.

- All service operation inputs and outputs are validated against the XML
schema.

- This is the single source of truth for all service and domain object
documentation.

— The same documentation is propagated to static WSDL, Java/PLSQL API
code, UDDI published content, and live WSDL.

— The Service Definition Library XML file is a service-oriented architecture
governance asset.

s The generated services deploy in any Java EE 7 with JDK 8 with latest security
updates compliant application server, with certification on Oracle WebLogic
Server 12.2.1.3.0. (Services are deployable to a clustered Java EE application
server.)

s The generated services are callable as SOAP based Web services over
SOAP/HTTP, local EJB calls, remote EJB calls, or POJO services.

= All services support Web service versioning strategy.
= All generated Web services are forward and backward compatible.

= For every Web service, a static WSDL is generated. (The generated static WSDL
pulls in all of the Business Object (BO) and Web service level documentation.)

= All deployed services can be published to any standard UDDI registry.

- UDDI publishing has been tested with both WebLogicServer and Oracle
Service Repository (OSR).

- Every generated <appname>-service.ear contains an Infrastructure
Management Service that can "talk to" the UDDI registry and publish all the
services available within the .ear to the registry.

» Services can take advantage of Oracle Database Real Application Cluster (RAC).
s The RSE tool has the following built-in functionality:

- Every service generated has a ping operation to test for network connectivity
(for SOAP services).

- A Service Operation Context is passed to both Java EE and PL/SQL service
provider API implementation code.

— The Web service consumer generated has client side asynchronous service
invocation capability.

— User-defined Web service Faults are automatically generated and handled by
the infrastructure at runtime. The definitions are made in the Service
Definition Library XML file.

1-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Concepts

Concepts

= All Web service operations are transactional. A SOAP Fault response automatically
rolls back the service operations transaction. A success response automatically
commits the service operations transaction.

= Web service consumers do not participate in the Web service provider side
transaction. There is no transaction context propagation from client to server.

Service-oriented architecture (SOA) is a strategy for constructing business-focused
software systems from loosely coupled, interoperable building blocks (called Services)
that can be combined and reused quickly, within and between enterprises, to meet
business needs (as described in Oracle Fusion Reference Architecture, SOA
Foundation Release 1.0).

Service Infrastructure products focus on enabling SOA projects, rather than
developing new business function, or providing for other business driven needs. The
goal of Service Infrastructure is to enable delivery teams to deliver SOA projects faster,
and to make the overall SOA undertaking much more manageable.

The Retail Service-Oriented Architecture Enabler Tool (RSE) is designed and
developed to support the creation of Web services by allowing a high level abstraction,
higher than the WSDL, and tailored to the business analyst/functional analyst. The
Business Analyst can easily understand, define, and design without knowing the
intricacies of WSDLs and the technical details of the implementation. This approach is
also called top-down Web services development.

What is a Service?

A service can be described as a way of packaging reusable software building blocks to
provide functionality to users and to other services. A service is an independent,
self-sufficient, functional unit of work that is discoverable, manageable, and
measurable, has the ability to be versioned, and offers functionality that is required by
a set of users or consumers.

A logical definition of a service has three components:
s Contract: A description of what the service provides (and its constraints).
= Interface: The means by which the service is invoked.

s Implementation: The deployed code and configuration of infrastructure.

Oracle Fusion Reference Architecture (OFRA)

It is important to understand the position and role of the RSE tool within the broader
context of service-oriented architecture and development. It is beyond the scope of this
document to cover the range of SOA approaches and methodologies, but it is
necessary to cover some aspects to place the tool in the appropriate context.

Oracle has developed and published the Oracle Fusion Reference Architecture (OFRA)
for building and integrating enterprise-class solutions, part of the IT Strategies from
Oracle collection.

The Oracle Fusion Architecture Framework is a collection of assets designed to
provide guidance on building solutions for the Oracle Fusion solution environment,
which includes the Oracle Fusion Reference Architecture (OFRA). The following
diagrams and definitions are from OFRA documentation.

Introduction 1-3

Concepts

Note: See Oracle Practitioner Guide Software Engineering in an SOA
Environment Release 1.0 E14486-01.

The service analysis phase of the Oracle Service Engineering Framework consists of
three main sets of engineering practices: SOA Requirements Management, Service
Identification & Discovery, and Service Release Planning.

As with traditional software engineering, service engineering also begins with
requirements and analysis, as illustrated below:

Service Analysis

Service Service
Identification Release
& Discovery Planning

S0A
Requirements

After Service Analysis, the next phase is Service Delivery, which includes the core
delivery engineering activities. In this phase, a service candidate is molded into one or
more services. Service candidates entering this phase have been justified for realization
and scheduled for release.

Service Delivery

Service Service

Definition Implementation

- = B

Service Delivery begins with Service Definition, which primarily determines service
boundaries as well as the construction of the service contract.

Service Design then acts upon the Service contracts to develop the Services' interfaces.
The process of defining a Service interface is much more involved than simply coming
up with the input and output for the Service. Service design analyzes the contract from
the consumer's perspective, and is influenced by factors such as scope (enterprise,
LOB, application, and so on), message exchange patterns (MEPs) as well as
non-functional requirements such as expected volume, and response time
requirements (specified in the contract).

1-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Technical Specifications

Service Implementation ensures that all aspects of the service contracts are
implemented and upheld through the delivery of business logic as well as the
deployment to Service Infrastructure. The implementation must faithfully realize the
Service Contract and interface which are defined through Service definition and
design.

Note: See: Oracle Fusion Reference Architecture, Overview. Release
1.0 E14482-01

Where Does RSE Fit?

The Retail Service-Oriented Architecture Enabler (RSE) is a Service Infrastructure tool
developed by Oracle Retail to enable the adoption of service-oriented architecture
(SOA) and avoid some of the typical pitfalls of many SOA projects. It addresses many
common issues, such as versioning, contract design, security, consistency, reuse,
documentation, governance, compliance, and customization. It does this by enforcing
SOA Best Practices and patterns that are proven and time tested by various SOA
pioneers.

The tool provides the capability for business analysts and developers to define the
correct service contract. It provides ease-of-use and a level of abstraction such that the
domain experts or subject matter experts are not required to understand code to
design services. The SOA developers can be completely focused on implementing the
business logic code behind the service and do not have to worry about SOA
infrastructure issues such as versioning and customization.

The Retail Service-Oriented Architecture Enabler Tool fits within the Service Delivery
phases. The appropriate use of the tool is after the service analysis phases and the
development team is ready for service definition and design. The RSE tool outputs can
then be used in the Service Implementation.

RSE is designed to support this type of approach, which is also called top-down Web
services development.

Technical Specifications

The Oracle Retail SOA Enabler tool has dependencies on Oracle Retail application
installations. This section covers these requirements.

Supported Operating Systems

Supported On Version Supported

Application Server OS ~ OS certified with Oracle Fusion Middleware 12¢
(12.2.1.3.0). Options are:

s Oracdle Linux 6 & 7 for x86-64 (Actual hardware or
Oracle virtual machine).

= Red Hat Enterprise Linux 6 &7 for x86-64 (actual
hardware or Oracle virtual machine)

= IBM AIX7.1 (actual hardware or LPARSs)
= Solaris 11.1 (actual hardware or logical domains)

s HP-UX11.31 Integrity (actual hardware, HPVM, or
vPars)

Introduction 1-5

Technical Specifications

Supported On Version Supported

Application Server Oracle Fusion Middleware 12¢ (12.2.1.3.0)
Components:
= Oracle WebLogic Server 12c (12.2.1.3.0)
= Java:

JDK 8 with latest security updates + 64 bit

1-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

2

Installation and Basic Setup

Determining the Type of Installation

The Retail Service-Oriented Architecture Enabler Tool can be installed and used in any
of the following configurations:

Standalone application

Web-application in Oracle WebLogic

Installing as a Standalone Application

To install the Retail Service-Oriented Architecture Enabler Tool, complete the
following steps.

1.
2.

Determine the user and the location to install the rse.

Verify the JAVA_HOME environment variable is set for the user. The JAVA_HOME
must be set to a Java 1.8 JDK with latest security updates. If the user is located on
the same server as the Application Server, then setting the JAVA_HOME to
$ORACLE_HOME/jdk is recommended.

>echo $JAVA_HOME
/home/aial/oracle/middleware/jdk

Create a directory for the RSE.

>mkdir rse

Download and extract the RSE to the RSE home directory.

> cd RSEStandalone
> cp /u00/stage/RIB19.0.0/RetailSOAEnabler19.0.0ForAl119.0.0Apps_eng ga.tar.
> tar -xvf RetailSOAEnabler19.0.0ForAl1119.0.0Apps_eng ga.tar

This step creates the RSE root directory structure. For example:
/user/aial/RSE/retail-soa-enabler.

This structure becomes RSE_HOME.

Note: RSE_HOME is assumed to be the rse-home directory in the
following steps.

> export RSE_HOME=/user/home/aial/RSE/retail-soa-enabler

Installation and Basic Setup 2-1

Installation as a Web Application in Oracle WebLogic

Installation is complete. See "Command Line Interface".

Installation as a Web Application in Oracle WebLogic

This section explains how to deploy the Retail Service-Oriented Architecture Enabler
tool to an Oracle WebLogic 12.2.1.3.0 application server as a Web application.

The steps below describe how to deploy the Retail Service-Oriented Architecture
Enabler tool to an Oracle WebLogic 12.2.1.3.0 Application Server as a Web application.

Note: See "Technical Specifications" in "Introduction”.

Prerequisites

The following are prerequisites for installation:

s The retail-soa-enabler-gui-<version>.war file is located within the directory
structure of the RetailSOAEnabler19.0.0ForAll19.0.0Apps_eng_ga.tar. Locate and
extract the contents to a location that is accessible by the browser for deployment.

s The installation and base configuration of the Oracle WebLogic Server 12.2.1.3.0 is
beyond the scope of this document. Work with the Application Server
Administration team to determine the physical and logical placement of the
retail-soa-enabler-gui-<version> component within the WebLogic Server 12.2.1.3.0
deployment.

Note: See the Oracle WebLogic Server 12c¢ (12.2.1.3.0) Installation Guide.

Deploy the Retail Service-Oriented Architecture Enabler

Using the WebLogic Server Administration Console, complete the following steps:

Note: For instructions with illustrations (screen captures), see
"Appendix: Installer Screens."

1. Navigate to the Deployments page.

2. If necessary, click Lock and Edit on the left navigation bar to enable the Install
button.

3. C(lick Install.

Note: If the application has already been installed, see "Redeploy the
Application".

The Locate deployment to install and prepare for deployment page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui-<version>.war file.

4. Select Upload your files.

5. On the Upload a Deployment to the Administration Server page, use the Browse
button to locate the retail-soa-enabler-gui-<version>.war file in the Deployment
Archive.

2-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

© ® N o

11.
12.

13.
14.
15.

16.

17.

18.
19.
20.

21.

Select the retail-soa-enabler-gui-<version>.war.
Click Next and move to Choose targeting style.
Select Install this deployment as an application.

Click Next and move to Optional Settings.

. Click Next and move to Select deployment targets. Select the Server name where

you want to install the application.
Click Next and move to Optional Settings page.

In the Security section, select the option DD only: Use only roles and policies that
are defined in the deployment descriptors.

Select No, I will review the configuration later.
Click Finish to deploy the application.

Click Activate Changes to finish install. Go to Deployments page, select the
retail-soa-enabler-gui<version> application and click on Start > Servicing all
requests button. This should change the status of retail-soa-enabler-gui-<version>
application to Active status.

After the application is deployed, we need to create a group and users who can
access the RSE GUI applications.

Go to Security Realms page, click on the default realm and go to Users and
Groups tab.

Create a new group named rseAdminGroup in the Groups page.
Go to Users page and create a new user.

Click on the newly created user and go to the Groups tab of that user. From the
Available groups, select rse AdminGroup and move it to the Chosen window.

Click Save.
This completes the deployment of RSE GUI application.

Verify the Retail Service-Oriented Architecture Enabler

Take the following steps to verify the retail service-oriented architecture enabler:

1.
2.

i

N o a &

Navigate to the Deployments page.
Locate retail-soa-enabler-gui-<version> on the Summary of Deployments page.

Click the name, retail-soa-enabler-gui-<version>, to move to the Settings for the
retail-soa-enabler-gui-<version>.

Select the Testing tab.
Click the index.jsp URL in the Test Point.
The URL opens the Retail Service-Oriented Architecture Enabler login page.

Enter the credentials created in the 'Deploy the Retail Service-Oriented
Architecture Enabler' section, and the RSE home page is displayed.

The installation is complete. See Chapter 4, "User Interface Usage."

Installation and Basic Setup 2-3

Installation as a Web Application in Oracle WebLogic

Redeploy the Application

If the retail-soa-enabler-gui-<version> application has already been deployed, follow
these steps:

1. If the retail-soa-enabler-gui-<version> application is running, select Stop and
When Work Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

2. Select Delete.

3. The retail-soa-enabler-gui-<version> should now not show on the Summary of
Deployment page.

4. Return to the appropriate step in "Deploy the Retail Service-Oriented Architecture
Enabler."

2-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

3

Tool Inputs and Outputs

This chapter describes the tool inputs and tool outputs associated with RSE.

Tool Inputs

Tool inputs include the following:

ServiceProviderDefLibrary.xml
RestServiceProviderDefLibrary.xml

XSDs and retail-public-payload-java-beans-<version>.jar
PL/SQL Oracle Objects

WSDL

ServiceProviderDefLibrary.xml

This is based on ServiceProviderDefLibrary.xsd schema. This definition file contains a
high level definition for Provider services for both PL/SQL and Java EE services, and
conforms to the ServiceProviderDefinition of a set of services which use Retail
Business Objects (BOs) as inputs and outputs.

RestServiceProviderDefLibrary.xml

This is the definition file for Restful Provider services for both PL/SQL and Java EE
services, and conforms to the ServiceProviderDefLibrary.xsd schema. This definition
file contains a high level definition of a set of services which use Retail Business
Objects (BOs) as inputs and outputs.

XSDs and retail-public-payload-java-beans.jar

The RSE tool references JAXB created java beans based on the BO source schema
XSDs. These beans are contained in the
retail-public-payload-java-beans-<version> jar.

The RSE tool will use Oracle Retail BOs from
retail-public-payload-java-beans-<version> jar.

The jar file is located in the WebLogic deployment directory where the RSE tool is
deployed.

The jar file is created using the Retail Artifact Generator from the source BO XSDs.

The jar file also contains the source XSDs themselves, which will be used by the
deployed service to validate all requests and responses against.

Tool Inputs and Outputs 3-1

Tool Outputs

PL/SQL Oracle Objects

These artifacts are created from the XSDs using the Retail Artifact Generator. The
Objects have to be installed into the database and accessible to the target Web service
APIs generated by RSE.

WSDL

For the Web service consumers, the input is the WSDL of the Web service provider that
the service will be consuming.

Tool Outputs
Tool outputs include the following:
s PL/SQL Provider Web service
s PL/SQL Consumer Web service
» Java EE Provider Web service
s Java EE Consumer Web service
s PL/SQL Provider Restful Web service

» Java EE Provider Restful Web service

PL/SQL Provider Web Service

[ey
Rewd Andact Generatar R::_II .S-EﬁE"MM <adrvica> Hp Mle

Hase kool
¥80s NEDs

BTG Do~ FIB Aevms [Picias e

e amsr =

PRI Se———— Bywan .”_""::' [3 IMan
[Risd B0 Toai Wty |RSE Todi 450 PLIBCL —
[| B
lm:(m:\-w Wi Breaer ABTs, - Sysiom R
I Ealured é'l’llll.'u Boin
% R 14.0 e o Do e
= P i— S D22 b
= =T Ruyes Earnal O et i

E - Uz o cenes setcclor

PL/SQL Applications (such as the Oracle Retail Merchandising System) use Oracle
Objects, which are similar to the Oracle Retail RIB style APIs. The tool generates a Web
service provider layer between the external clients and the PL/SQL APIs to provide
the Web service functionality.

The RSE PL/SQL provider output is a zip file. The filename convention is <app>_
PLSQLServiceProvider.zip. For example, rms_PLSQLServiceProvider.zip. The zip file
contains the following:

s <ServiceName>ProviderImplSpec.sql

3-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Tool Outputs

This is the specification for the <ServiceName>. It creates the package for the
<ServiceName> in the <app> database. It describes all the operations and their IN
and OUT parameters for the service.

<ServiceName>ProviderImplBody.sql

This is the package body for the <ServiceName>. This is where the application
teams have to write the business logic.

<app>-service.ear

The.ear file has to be deployed on an Oracle WebLogic 12.2.1.3.0. The steps for
deployment are in the RSE PL/SQL WS Installation Guide.

<app>-decorator-services.zip

This zip file contains OSB 12.2.1.3.0 decorator jars for each service defined in the
service definition file. These jars are used by Retail Service Backbone (RSB) as
input files.

ServiceProviderDefLibrary.xml

This is a copy of the ServiceProviderDefLibrary.xml file that was used to create the
output.

<ServiceName>Service.wsdl

This is a WSDL file describing the generated Web service. This WSDL file will be
fully documented, pulling in documentation elements from both the service def
file as well as the BO XSD files. This is a single file with all types inlined. It can be
used as input to create a consumer for the generated provider.

PL/SQL Consumer using Webservice Call-Out Utility

1

Retail SOA Enabler

(PL/SQL WS Client) <service>.zip file

r— Run Time
Support jars
Run Time WS
<Se umer Client (java

stored
procedures)

Run Time PL/

/ SQL API's
iceCo
N

L]

o | - Retail SOA Enabler

RTG Dev — RIB Artifact [Notes LEGEND

Generator & RSE
RSE Tool and PL/SQL System Sﬁ:r’g - G Database
Retall SOA Tool Web | WS Client API's
Service Provider s s
! uman
Perspective T |n| .
RGBU
O On-page connector

Oracle Corporation

>\ System
} External to
Release: 13.1 ~___./ Domain

- System of
4 \ ,
ORACLE i \ Record External U Offpage

[connector
e \ (557],/ to Domain

Context Model

RSE tool requires a web service WSDL and the corresponding RSE's Service Def xml
file as input for generating PLSQL service consumer code. The output of RSE is a zip

Tool Inputs and Outputs 3-3

Tool Outputs

file which contains all the artifacts required for invoking that WebService from PLSQL
code. The output zip file follows the naming convention as
<WebServiceName>PortType_PlsqlWithJaxWsServiceConsumer.zip.

The PLSQL Consumer zip file generated using RSE contains the following files. These
files are used for setting up the database schema where the PLSQL consumer code is
going to run.

1. <WebServiceName>ServiceConsumer.jar
<WebServiceName>ServiceConsumerPlsqllmpl.jar
<WebServiceName>ServiceConsumerPlsqlImpl_create.sql
oo-jaxb-bo-converter-<version>.jar
retail-public-webservice-consumer-util-19.0.0.jar
retail-private-plsql-webservice-consumer-19.0.0.jar
retail-public-payload-database-object-types-19.0.0.jar
retail-public-payload-java-beans-19.0.0.jar

© ® N o a M 0 Db

retail-public-payload-java-beans-base-19.0.0.jar

-
o

. service_log_enteries.sql
11. PlsqlServiceConsumerImpl_grant.sql

12. PlsqlWithJaxWsServiceConsumer_ReadMe.doc

Note: <WebServiceName>Service.wsdl will be included only if the
consumer is generated using the WSDL file path, not the WSDL file
URL.

Note: In the above list, first three files are specific to individual
services and rest are common for all web services.

3-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Tool Outputs

PL/SQL Consumer Web Service

-

(Retail SOA Enabler o oo
<service>.zip file

Run Time 4 I
Support i
Support jars { External Web Service Provider
Run Time WS
<SenviceName>Consumer Client (java
b Jar stored
procedures)
\

<ServiceName>Consumer Run Time PL/

|_create sql / SQL API's s S 4

<ServiceName>Consumer
_drop sql

(PLISQL WS Client)

\
\
|
|
|
|
|
|
|
|
|
|
|
|
1

Retail SOA Enables

<ServiceName>Consumer_

<ServiceName>Consumer_

RTG Dev - RIB Artifact | Notes LEGEND

Generator & RSE
RSE Tool and PL/SQL System 3‘;1':;‘ i G Database
Retail SOA Tool Web | WS Client API's

© |Service Provider o e

B |Perspective /7777y System el Human

= i | External to outside of Actor

& |Release: 134 ./ Domain RGBU

g >\ System of Off-page On-page connector
c ORACLE' i | Record External P 9|

S ReTALL |/ to Domain connector

© Oracle Corporation

Java EE Provider Web Service

(Retail S0 Erabler

Redail Artitact Generator IsreaEE i) =sprvice= Tip file

E WSDL

Beste ot
¥EDE NSDe

uskere-niak el , LY
ot T B oo
wrrd saarapdas. 2 s I
P AP] |Rﬂﬂ|ﬂl'|' |
L Haratn
(naEEm L
A
~,
) | A Dosign Tl
L AW g
uslcn-ndak
bl i
database oz
R i
Sarsica
Dot
e ——————
L - .
| I
p. | [avaEE
¥
I |
\ g

RIG Qv — HIE: Aublacl | Mclen

LEGEND
Ganamdor b ASD
Antitacs Generator and Spukn aff:}“ [j Didaazicas
Fatail 304 Tasl Wab JRESE Tosd ind jevaEE h

Surwice Provider WE Providar AM's
Preapeciia — T syriom Symin) Hurian
{ } Extemnal i s al Aewr

1 % o Duna-

_— O puigi = rescn
-~ =y, Spnkarcd e
EHRACLE Rr=aed Dainmal Al i}

= !E Vi 2oeman AT

Context Modal

£ Omor Cogsaalon

Tool Inputs and Outputs 3-5

Tool Outputs

Java EE Consumer Web Service

——— =

-
|| Support L
N)

L%

-_— e

o . =y
Ratail 504 Enabler o ———
[iavaEE WS Cliert) [) E sterria Wain
senvice> zip file o :
Fun Trme W5 l
=GanicailaTes Consum [~ Cliant |
B o I
[jerem LAK-BEE Client jar) WSDL |
Diasign Time _—— e —
o aricaPlamesC o, WE Client 1
m A
Rupqeet jars
- —_———
i WEDL i)
| |
L) ‘1-1 jmvaEE App i
h ¥ | 1
N
|55 oev - RiE anttace [Hotes [LEGEND
Guneralor & RSE
RSE Tool and [avaEE Erpatarn H E""“_’I'}m [] Catacase
— | Reetail 30K Tool Wetr | WS Clemt API's e
&2 | Service Provider _ Sy Rk
E | Parspactiva - “, Cysfem outside of Humas
= | Exizmal to ROAL Acctor
= % - Doman
= ., B of O On-pags
I yalRm]
= ORADLE i Rucord Exlamal onnesion connesior
‘g o E J o Doman

& Qnack: Corpormon

3-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

4

Command Line Interface

The Retail Service-Oriented Architecture Enabler (RSE) tool produces design time and
run time artifacts, and it works in conjunction with another tool, the Retail Functional
Artifact Generator.

Note: See the Retail Functional Artifact Generator Guide.

The RSE is used to generate the following artifacts:
= Server Provider

s Service Consumer

Sevice Provider

Arguments

The service provider gives the option of selecting the Web Service Type (SOAP or
REST) and Provider type (a Java EE or a PL/SQL service provider).

A PL/SQL service provider can be used by PL/SQL applications such as RMS to
expose PL/SQL packages as Web services. The Java EE service provider option allows
Java EE applications to create Web services using Oracle Retail payload classes as
input and outputs.

The following table summarizes arguments for the rse tool:

Option Argument Type Usage
-b,~-baseDir / Required To take input for base
option directory. For
example:
b./
-i ./integration-lib Required Path to integration lib
option directory.
-s Conf/ Required Service provider
ServiceProviderDefLibrary.xml option definition file
-g,—~webServiceType SOAP or REST Required WebServiceType-
SOAP or REST
-h Help Optional To read command line
help.

Command Line Interface 4-1

Sevice Provider

Commands

The following table summarizes valid commands for the rse tool, as well as

corresponding output.

Command

Output

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/provider/
GenPLSQLServiceProvider.groovy -g soap -i
./integration-lib/ -b ./ -t./ -s
conf/ServiceProviderDefLibrary.xml

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/provider/
GenPLSQLServiceProvider.groovy -g rest -i
./integration-lib/ -b ./ -t./ -s
conf/RestServiceProviderDefLibrary.xml

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/provider/
GenJavaEEServiceProvider.groovy -g soap -i
./integration-lib/ -b ./ -t./ -s
conf/ServiceProviderDefLibrary.xml

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/provider/
GenJavaEEServiceProvider.groovy -g rest -i
./integration-lib/ -b ./ -t./ -s
conf/RestServiceProviderDefLibrary.xml

Generates a service provider zip file for given
plsql app. Example- rms_
PLSQLServiceProvider.zip

Generates a service provider zip file for given
plsql app. Example- rms_
PLSQLServiceProvider.zip

Generates a service provider zip file for given
javaee app. Example- sim_
JavaEEServiceProvider.zip

Generates a service provider zip file for given
javaee app. Example- sim_
JavaEEServiceProvider.zip

The generated Web services do not have any business logic in them. They provide only
the framework for the development of Web services.

The inputs for creating Java EE or PL/SQL Web services are as follows:

= Service Definition Library XML file for SOAP web services

= Service Definition Library XML file for RESTful web services

s Custom Business Objects jar file
s Localization Business Object Jar file

= Service Implementation jar file

Service Definition Library XML File

The mandatory input for creating a Java EE or a PL/SQL service provider is a Service
Definition Library XML file. This file should contain all the details about the Web

services that need to be created.

Note:

See "Service Definition Library XML File".

Service Definition Library XML File for Restful Web Services

The mandatory input for creating a Restful Java EE or a PL/SQL service provider is a
Rest Service Definition Library XML file. This file should contain all the details about

the web services that need to be created.

4-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Service Consumer

Custom Business Objects Jar File

While creating Web services, users may want to use their own payloads to extend the
existing payloads. These payloads are known as custom payloads and can be provided
to the tool as input for creating Web services. The service provider screen has a field
for custom Business Objects jar file. It allows the user to upload a jar file which
contains the custom payloads. This jar file is optional; if this is not provided the base
payloads are used to create the Web services.

Note: See the Oracle Retail Functional Artifact Generator Guide for how
to create a custom Business Objects jar file.

Localization Business Object Jar File

While creating Web services, users may want to use localized version of payloads.
These payloads are known as localized payloads and can be provided to the tool as an
input for creating Web services. The service provider screen has a field for localization
Business Object Jar file. It allows the user to upload a jar file which contains the
localized payloads. This jar file is optional; if this is not provided, the base payloads
are used to create the Web services.

Note: See the Oracle Retail Functional Artifacts Generator Guide for
how to create a localization Business Objects jar file.

Service Implementation Jar File

This jar file is used only while creating Java EE Web services. While creating Java EE
Web services the tool generates empty implementation for the services. Users will have
to create their own implementation classes for the Web services and use those classes
in the generation of the .ear file in the zip file.

After entering the file names in all the text boxes, click Generate Stub.

On successful generation of the stub, the output zip file
(<app>_JavaEEServiceProvider.zip or <app>_PLSQLServiceProvider.zip) will be
available as download from the browser. The zip folder contains .ear file which can be
deployed on Application Server.

Note: See "Creating the Java EE Implementation Jar".

Service Consumer

The Service Consumer allows for the creation of a Java EE or PL/SQL service
consumer. Service consumer option for restful web services is not supported currently.

Arguments

The following table summarizes arguments for the rse tool:

Command Line Interface 4-3

Service Consumer

Commands

Option Argument Type Usage
-b,--baseDir / Required To take input for
option base directory. For
example:
-b./
-i,—integrationLibDir ./integration-lib Required Path to integration
option lib directory
-w,~-wsdlFile CustomerOrderAddressService.wsdl Required Wsdl file
option
-h Help Optional To read command

line help.

The following table summarizes valid commands for the rse tool, as well as

corresponding output.

Command

Output

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/consumer
/GenPLSQLServiceConsumer.groovy -w
<ServiceWsdlFile>.wsdl -i ./integration-lib -b
./

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/consumer
/GenJavaServiceConsumer.groovy -w
<ServiceWsdlFile>.wsdl -i ./integration-lib -b
./

$./retail-soa-enabler.sh

oracle/retail /soa/enabler/service/consumer
/ GenPlsqlWithJaxWsServiceConsumer.groovy
-w <ServiceWsdlFile>.wsdl -i ./integration-lib
b./-s
conf/<ServiceProviderDefLibrary>.xml

Generates a service consumer zip file for given
service. Example-

Fin-DrillBackForwardUrlPortType_
PLSQLServiceConsumer.zip

Generates a service consumer zip file for given
service. Example-

fin-GlAccountValidationPortType_
JavaServiceConsumer.zip

Generates a service consumer zip file for given
service using WS callout utility. Example-
fin-DrillBackForwardUrlPortType_
PlsqlWithJaxWsServiceConsumer.zip

4-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

O

User Interface Usage

The Retail Service-Oriented Architecture Enabler (RSE) tool produces design time and
run time artifacts, and it works in conjunction with another tool, the Retail Functional
Artifact Generator.

Note: See the Retail Functional Artifact Generator Guide.

The graphical user interface (GUI) for RSE is hosted on an Oracle WebLogic server as a
Web application. Once installed and configured, the GUI is accessed through a URL
(http:/ /host:port/contextroot). For example,

http:/ /example.com:7001/retail-soa-enabler-gui-<version>. First it shows the login
page. Here, use the same user name and password to log in which was created in the
RSE deployment step and added to the rse AdminGroup. After successful login, it goes
to the home page of the application.

The RSE user interface has three tabs, or sections:
= Home

= Server Provider

= Service Consumer

The user interface is designed to be easy to use. Online help is available, including
examples for each function.

The following is the Home Page.

ORACLE
Retail SOA Encbler

The Retail Serace Enabler tool (RSE) i desagned ta create the dppropnate Provder web serace end-ponts aad the Consumer claents for wed serace proaders as well as templates for th
contanng the APY tempiates appropeate for the type of seevce, 2 Prowder o 3 Consumen, for e technology selected. PUSOL or Jaa

For addbonal detals please see the RSE User Gude
To create Prowder Senaces . Select Seruce Prowder Tab

To create Consume Senaces, Select Serace Consumer Tad

User Interface Usage 5-1

Service Provider

Service Provider

The service provider screen gives the option of selecting the Web Service Type (SOAP
or REST) and Provider type (a Java EE or a PL/SQL service provider).

Welcome, readmin Hle 2“

Horé | Service Provider Service Congurner
[Choose a Wb Serdce Type Kl

& 504P

CREST
Chaose Service Provider Type: &

@ PLSOL

O JAVAEE
Select your Serdce Definition Libeary XML file:

|_Browee.

[Solect your custom Busmess Object Jar file{option al): ki

|_Browse

Select your localization Business Object Jar flefoptional):

Elrowe.

Select your Service Implernentation Jar file{optional): &

Generabe Stub

Log filé contenis are $hown bilow

A PL/SQL service provider can be used by PL/SQL applications such as RMS to
expose PL/SQL packages as Web services. The Java EE service provider option allows
Java EE applications to create Web services using Oracle Retail payload classes as
input and outputs.

The generated Web services do not have any business logic in them. They provide only
the framework for the development of Web services.

The inputs for creating Java EE or PL/SQL Web services are as follows:
= Service Definition Library XML file for SOAP web services

= Service Definition Library XML file for RESTful web services

= Custom Business Objects jar file

s Localization Business Object Jar file

= Service Implementation jar file

Service Definition Library XML File

The mandatory input for creating a Java EE or a PL/SQL service provider is a Service
Definition Library XML file. This file should contain all the details about the Web
services that need to be created.

Note: See Chapter 5," Service Definition Library XML File."

Service Definition Library XML File for Restful web services

The mandatory input for creating a Restful Java EE or a PL/SQL service provider is a
Rest Service Definition Library XML file. This file should contain all the details about
the web services that need to be created.

5-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Service Consumer

Custom Business Objects Jar File

While creating Web services, users may want to use their own payloads to extend the
existing payloads. These payloads are known as custom payloads and can be provided
to the tool as input for creating Web services. The service provider screen has a field
for custom Business Objects jar file. It allows the user to upload a jar file which
contains the custom payloads. This jar file is optional; if this is not provided the base
payloads are used to create the Web services.

Note: See the Oracle Retail Functional Artifact Generator Guide for how
to create a custom Business Objects jar file.

Localization Business Object Jar File

While creating Web services, users may want to use localized version of payloads.
These payloads are known as localized payloads and can be provided to the tool as an
input for creating Web services. The service provider screen has a field for localization
Business Object Jar file. It allows the user to upload a jar file which contains the
localized payloads. This jar file is optional; if this is not provided, the base payloads
are used to create the Web services.

Note: See the Oracle Retail Functional Artifacts Generator Guide for
how to create a localization Business Objects jar file.

Service Implementation Jar File

This jar file is used only while creating Java EE Web services. While creating Java EE
Web services the tool generates empty implementation for the services. Users will have
to create their own implementation classes for the Web services and use those classes
in the generation of the .ear file in the zip file.

After entering the file names in all the text boxes, click Generate Stub.

On successful generation of the stub, the output zip file (<app>_
JavaEEServiceProvider.zip or <app>_PLSQLServiceProvider.zip) will be available as
download from the browser. The zip folder contains .ear file which can be deployed on
Application Server.

Note: See Chapter 7, "Creating the Java EE Implementation Jar."

Service Consumer

The Service Consumer tab allows for the creation of a Java EE or PL/SQL service
consumer. Service consumer option for restful web services is not supported currently.

Select any one of the option to choose the WSDL file as shown in the screen.
1. Select your WSDL file. Ex: Choose from drive.
2. Click Generate Stub button to generate the consumer zip file.

When the tool is finished, the consumer distribution zip file can be downloaded to a
specific location.

User Interface Usage 5-3

Help

Welcome, rseadmin Help Logout
— ﬂ

Home Service Provider Service Consumer

Choose Service Consumer Type:
* pPLSOL
JAVA I

Select your WSDL file: @ | Choose File | No file chosen

| Generate Stub |

Log file contents are shown below:

Help

Click the Help link on the right upper corner of the Home page for a brief description
of the Service Provider and Service Consumer functionality.

Note: PL/SQL service consumer generation fails in Ul due to
database supporting JDK 7 only. Workaround is to generate PL/SQL
service consumer via command line.

5-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

6

Service Definition Library XML File

The Service Definition Library XML file (ServiceDef) is the mandatory input for
creating a Java EE or a PL/SQL service provider. This file should contain all the details
about the Web services that need to be created.

This chapter provides a detailed description of each section of the schema as well as
instructions for managing the Service Definition Library XML file.

Schema Definition

This section discusses the elements of the schema, beginning with the root element
and including child elements.

serviceProviderDefLibrary

This is the root element of the schema. The following is an example of the
serviceProviderDefLibrary element:

<xs:element name="serviceProviderDefLibrary">
<xs:complexType>
<Xs:sequence>
<xs:element ref="service" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="appName" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional" default="vl"/>
<xs:attribute name="serviceNamespacePattern" type="xs:string" use="optional"
default="http://www.oracle.com/retail/APPNAME/integration/services/SERVICENAMEServ
ice/VERSION"/>
</xs:complexType>
</xs:element>

Attributes
The serviceProviderDefLibrary has the following attributes:

= appName

This is the name of the application for which the .ear file is being built. When the
.ear file is generated, the name of the .ear file starts with the application name. The
format of the generated .ear file is <appName>-service.ear. For example, if the
appName is rms, the .ear file name is rms-service.ear.

= serviceNamespacePattern

This attribute specifies the pattern for the namespaces that are generated for the
Web services. The default value for this attribute is

Service Definition Library XML File 6-1

Schema Definition

http:/ /www.oracle.com/retail/ APPNAME/integration/services/SERVICENAM
EService/VERSION.

s Version

This is the version of the service definition.

Elements
The serviceProviderDefLibrary contains the following elements:

service

Each service element in serviceProviderDefLibrary represents one Web service. The
service provider definition should have at least one service defined in it.

The following is an example of the service element:

<xs:element name="service">
<xs:complexType>
<XSs:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="operation" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="serviceNamespace" type="xs:string"
use="optional"/>
<xs:attribute name="serviceVersion" type="xs:string" use="optional"
default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"
default="false"/>
</xs:complexType>
</xs:element>

The service element has the following attributes:
= name
This is the name of the Web service to be created.
= serviceNamespace
This is the namespace in which the Web service will be created.
= serviceVersion
This is the version of the Web service. The default value is v1.
The service element contains the following elements:
s Documentation
This field describes the purpose of the service.
= Operation

The operation represents the method in the generated Web service. Each service
should contain at least one operation.

The following is an example of the operation element:

<xs:element name="operation">
<xs:complexType>
<Xs:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="input" />

6-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Schema Definition

<xs:element ref="output" minOccurs="0" />
<xs:element ref="fault" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="suffix" default="inputType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="inputType" />
<xs:enumeration value="outputType" />
<xs:enumeration value="NONE" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="custom" type="xs:boolean" use="optional" default="false"/>
</xs:complexType>
</xs:element>

The operation element has the following attributes:

name
This is the name of the operation.
suffix

This is the string to be added to the end of the operation name. One of the
following values is supported for this attribute:

- inputType

If the suffix value is inputType, the input type name of the operation is added
to the generated method name. For example, if the operation name is create
and input type for that operation name is SupplierDesc, the generated
operation name will be createSupplierDesc.

- outputType

If the suffix value is outputType, the output type name of the operation is
added to the generated method name. For example, if the operation name is
create and output type for that operation name is SupplierRef, the generated
operation name will be createSupplierRef.

- NONE

If the suffix value is NONE, a suffix is not added to the operation name.

Note: If no value is provided for the suffix attribute, inputType is
used as the default value.

The operation element contains the following child elements:

Documentation

Input

Output

Fault

Fault contains the following elements:

— Documentation

Service Definition Library XML File 6-3

Managing the Service Definition Library XML File

The description of the fault.
- Faulttype

The name of the fault.

Managing the Service Definition Library XML File

The Service Definition Library XML file is the single source of truth for the RSE tool.
This section discusses the creation and management of the file.

Creating the File

The Service Definition Library XML example in "Appendix: Sample
ServiceProviderDefLibrary.xml" can be used as the initial template. Use the
instructions in the Service Definition Library XML File section to construct the
ServiceDef according to the goals of the service requirements.

As discussed in the Concepts section, the creation of this file is the result of the
analysis phase and part of the Service Design phase. The template provides the
placeholders for the standard service components: service name, operation name, and
the contracts for each of the operations, as well as the standard faults.

The ServiceDef should be created and managed (or governed) as a service-oriented
architecture asset in a source code control system. It is as important as the Service
Contracts (XSDS) and implementation source code.

Changing the Version of the File

To change the version of the service definition library file, a version attribute must be
added to the root element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

</serviceProviderDefLibrary>

Changing the appName Attribute in the File

To change the application name in the services, edit the appName attribute in the root
element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="editThisAppName"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

</serviceProviderDefLibrary>

6-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File

Renaming a Service or Operation Name in the File

To rename a service, edit the name attribute in the service element.
For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="EditThisName">
</serviceProviderDefLibrary>

To rename an operation in the service, edit the name attribute of the operation
element.

Adding a New Service or New Operation to the File

To add a new service to library, add a new service element with its child elements.
For example:

<serviceProviderDefLibrary appName="rmscostchange"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="ExistingService">
<operation name="existingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem ccurs.</documentation>
</fault>
</operation>
</service>
<service name="AddedNewServiceName">
<operation name="Operation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>

Service Definition Library XML File 6-5

Managing the Service Definition Library XML File

</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem
occurs.</documentation>
</fault>
</operation>
</service>

</serviceProviderDefLibrary>

To add a new operation to a service, add the operation element with its child elements.
For example:

<service name="service">
<service name="ServiceName">
<operation name="NewAddedOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem ccurs.</documentation>
</fault>
</operation>
<operation name="ExistingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>
</fault>

6-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File

<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt

made to create a object that already exists.</documentation>

</fault>

<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem

occurs.</documentation>

</fault>

</operation>

</service>

Deleting a Service or Deleting Operations from the File

To delete a service from the library, remove the service element and all its child
elements from the library.

To delete an operation from the service, delete the operation element and all its child
elements.

Defining New Exceptions to the Operations

Users can define a new exception in the service definition library. The RSE tool creates
the artifacts with this new exception.

For example:

<operation name="ExistingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem occurs.</documentation>
</fault>
<fault faultType="UserDefinedException">
<documentation>This is user defined exception for a
particular scenerio.</documentation>
</fault>
</operation>

Using Different Versions of Objects as Input/Output to an Operation

The version difference between objects does not impact the RSE tool, as long as the
objects adhere to standards.

Service Definition Library XML File 6-7

Managing the Service Definition Library XML File

6-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Service Definition Library XML File for
Restful services

The REST Service Definition Library XML file (ServiceDef) is the mandatory input for
creating a RESTful Java EE or a PL/SQL service provider. This file should contain all
the details about the Web services that need to be created.

This chapter provides a detailed description of each section of the schema as well as
instructions for managing the Service Definition Library XML file.

Schema Definition

This section discusses the elements of the schema, beginning with the root element
and including child elements.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema"

targetNamespace="http://www.oracle.com/retail/integration/services/serviceProvider
DefLibrary/vl"

xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/vl

elementFormDefault="qualified">

<xs:element name="serviceProviderDefLibrary">

<xs:complexType>
<XS:sequence>
<xs:element ref="service" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="appName" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional"
default="v1"/>
<xs:attribute name="serviceNamespacePattern" type="xs:string"
use="optional"
default="http://www.oracle.com/retail /APPNAME/integration/services/SERVICENAMEServ
ice/VERSION" />
</xs:complexType>
</xs:element>
<xs:element name="documentation" type="xs:string" />

<xs:element name="header">

<xs:complexType>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="headerName" type="xs:string" use="required"/>
<xs:attribute name="headerRequired" type="xs:boolean" use="optional"

Service Definition Library XML File for Restful services 7-1

Schema Definition

default="false"/>
</xs:complexType>
</xs:element>
<xs:element name="input">
<xs:complexType>
<XSs:sequence>
<xs:element ref="documentation" minOccurs="0" />

<xs:element ref="header" minOccurs="0" maxOccurs="unbounded"

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="version" type="xXs:string" use="optional"
default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"
default="false"/>
<xs:attribute name="identifierNameList" type="xs:string"
use="optional" />
</xs:complexType>
</xs:element>
<xs:element name="output">

<xs:complexType>
<XS:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="relations" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional"
default="v1"/>
<xs:attribute name="custom" type="xXs:boolean" use="optional"
default="false"/>

</xs:complexType>
</xs:element>
<xs:element name="relations">

<xs:complexType>
<xs:sequence>
<xs:element ref="relatedTo" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="relatedTo">
<xs:complexType>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<Xs:patternva1ue:"[a—zA—ZO—9]*|EXTERNAL_SYSTEM"></xs:pattern>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
</xs:complexType>
</xs:element>

<xs:element name="fault">
<xs:complexType>
<Xs:sequence>

7-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Schema Definition

<xs:element ref="documentation" minOccurs="0" />
</xs:sequence>
<xs:attribute name="faultType" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="operation">

<xs:complexType>
<XS:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="input" />
<xs:element ref="output" minOccurs="0" />
<xs:element ref="fault" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="suffix" default="inputType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="inputType" />
<xs:enumeration value="outputType" />
<xs:enumeration value="NONE" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="custom" type="xs:boolean" use="optional"
default="false"/>
<xs:attribute name="operationType" default="READ_WITH_IDENTITY">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="CREATE" />
<xs:enumeration value="READ_WITH_IDENTITY" />
<xs:enumeration value="READ_WITH_ PREDICATE" />
<xs:enumeration value="UPDATE" />
<xs:enumeration value="DELETE" />
<xs:enumeration value="PROCESS" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="service">

<xs:complexType>
<XS:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="operation" maxOccurs="unbounded" />
</xXs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="serviceNamespace" type="xs:string"
use="optional"/>
<xs:attribute name="serviceVersion" type="xs:string" use="optional"
default="v1"/>
<xs:attribute name="custom" type="xXs:boolean" use="optional"
default="false"/>
</xs:complexType>
</xs:element>
</xs:schema>

Service Definition Library XML File for Restful services 7-3

ServiceProviderDefLibrary

ServiceProviderDefLibrary

This is the root element of the schema. The following is an example of the
serviceProviderDefLibrary element.

Sample Rest Service Definition Library file:

<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/v1l" xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance">
<service name="Suppliers">
<operation name="find" operationType="READ WITH_ PREDICATE"
suffix="outputType">
<input type="SupplierColRef" identifierNameList="country_id"/>
<output type="SupplierColDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="delete" operationType="DELETE">
<input type="SupplierColRef" identifierNameList="country_id"/>
<output type="SupplierColRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>

</service>
</serviceProviderDefLibrary>

Validation rules for a service definition xml for RESTful web services

Rules for Application Name Field

s There must be a valid appName specified in service def. It must follow these rules:
= Must not be empty.
= Must be alphanumeric.

» Must not start with a number.

Rules for Service Name Field

s There must be at least one service in the service def.
= The service name must be unique in the service def.
» The service name must follow these rules:

= Must not be empty.

= Must be alphanumeric.

= Must not start with a number.

Rules for Service Operations

» There must be at least one operation in the service.

7-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Validation rules for a service definition xml for RESTful web services

For each operation a valid OperationType must be defined. Operation type can be
one of the following;:

» READ_WITH_IDENTITY
» READ_WITH_PREDICATE
= NAVIGATE_TO_CHILD

s CREATE
» DELETE

s UPDATE
= PROCESS

READ_WITH_IDENTITY: To get a unique resource instance. It maps to HTTP
GET operation. It requires path parameters which are the attributes to uniquely
identify an instance of the resource. For example, Supplierld element of
SupplierDesc payload can be an identifier for Supplier service/resource. The
request does not contain any body with this method, so "Nothing" is a valid input
type for this operation. The values of path parameters are passed to service
provider in ServiceOpContext object.

READ_WITH_PREDICATE: To get a resource based on query parameter.
Generally it should be used to get collection types of payloads. The request does
not contain any body for this operation, so "Nothing" can be used as input type for
this operation. The values of request parameter are passed to service provider in
ServiceOpContext object.

NAVIGATE_TO_CHILD: To get child element of a resource. The child element
must be a top-level element.

CREATE: To create a new instance of the resource that this service represents. It
maps to HTTP POST method. The request body contains the object that needs to
be created.

DELETE: To delete an existing resource instance. DELETE maps to HTTP DELETE
method. The path parameter contains the identifiers to identify a resource instance
to be updated. It doesn't have a request body payload.

UPDATE: To update an already existing resource. UPDATE maps to HTTP PUT
method. The path parameter contains the identifiers to identify a resource instance
to be updated. And the request body contains the full payload to be updated.

PROCESS: To perform any business operation on the existing resource. PROCESS
maps to HTTP POST method. And the request body contains the full payload for
the operation to be performed.

The operation name must follow these rules:
- Must not be empty.

— Must be alphanumeric.

— Must not start with a number.

Each operation must have a valid input type and output type defined. These types
must be the names of valid payload objects.

READ_WITH_PREDICATE operation type is only supported for CREATE and
PROCESS operations. DELETE and UPDATE operations are not supported on a
collection of objects.

Service Definition Library XML File for Restful services 7-5

Validation rules for a service definition xml for RESTful web services

s The input type of an operation must have a valid value for the field
identifierNameList, which means that the value specified for that field must
follow these rules:

— It can have comma-separated names of fields.

— The fields must be valid elements present in the XSD of the payload name
specified in inputType of that operation.

— If the service has an operation of type READ_WITH_PREDICATE, then the
payload specified in inputType must have an element named "collection_
size".That signifies that this service is for collection of objects.

s The identifierNameList specified in READ_WITH_IDENTITY is used for building
URI for the service. For example, if the service name is "Supplier" and
identifierNameList for READ_WITH_IDENTITY operation has a value such as
"supplier_id, sup_xref_key" then the URI of that service will be
http:/ / <host>:<port>/<contextPath>/SupplierResource/ <supplierld>/<sup_
xref_key>An example of a request is:
http:/ /localhost:7001 /rms-service/1/xrefl.In this example, "1" will be substituted
as the value for supplierld and "xrefl" will be substituted as the value for "sup_
xref_key" field.

= All the operations of a service should contain the same value for
identifierNameList. The identifierNameList specified in READ_WITH_IDENTITY
operation is used for building the URI for UPDATE, DELETE and PROCESS
methods also for the service, because the URI represents the object it is working
on, and the READ_WITH_IDENTITY, DELETE, UPDATE and PROCESS methods
should work on the same object.

= RSE generated RESTful resources operate on retail business payloads. Any
payload type used in input/output elements of service def must be a top-level
payload, which means that it should be a top-level element of an XSD. For
example, SupplierDesc is a top-level payload because it is a top-level element in
SupplierDesc.xsd, but SupAttr is not a top-level payload because it is defined as a
child element of SupplierDesc. So SupplierDesc can be used to define
input/output type in service def, but SupAttr cannot be used for input/output
type in service def.

= A REST resource/service can work on a simple payload type (e.g., SupplierDesc)
or a collection payload type (e.g. SupplierColDesc) or it can have a combination of
both. When service has a combination of collection and simple types, the collection
payload must be a collection of the simple type that is used in the service. For
example, SupplierColDesc is a collection of SupplierDesc, so they can be used in
same service.

= When a simple type and a collection type are used in same service, then operations
should be named appropriately to differentiate between simple and collection type
operations. When operation name is not the default name, then the operation
name is added in the generated URL.

<operation name="update" operationType="UPDATE">
<input type="SupplierDesc" identifierNameList="supplier_id"/>
<output type="Nothing"></output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="updateAll" operationType="UPDATE">
<input type="SupplierColDesc" queryParamList="country id"/>
<output type="Nothing"></output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>

7-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Validation rules for a service definition xml for RESTful web services

Based on above servicedef, the generated URLs will be:
/Supplier/{supplier_id}/

/Supplier/updateAll?country_id={country_id}

Every operation must have a valid input and output type defined. Some
operations do not need payload body in request. These are HTTP GET and
DELETE methods. For operations based on these HTTP methods, the input type
can be "Nothing".

"Nothing" is a valid retail payload type and it is used to represent void or empty
type in request and response messages

If an operation does not need to return anything in response body, then "Nothing"
should be used in output type for that operation.

Operation type NAVIGATE_TO_CHILD is used to GET a child element type of a
resource. The child payload must be a top-level payload as well. Following is a
sample definition for NAVIGATE_TO_CHILD type:

<service name="CustOrdItm">
<operation name="find" operationType="READ_WITH_IDENTITY" suf-fix="outputType">
<input type="ReferencelId" identifierNameList="id"/>
<output type="CustOrdItmPkVo"></output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="taxLines" operationType="NAVIGATE_TO_CHILD">
<input type="Nothing" queryParamList="tax_id"/>
<output type="TaxLinePkColVo"></output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
</service>
Operation type PROCESS is used to support any business operations which are
not CRUD operations. The operation name defined in service def is added in the
generated URL and it uses HTTP POST method. Following is a sample definition
for PROCESS type:

<operation name="calculateTotal" operationType="PROCESS">
<input type="PayTermDesc" />
<output type="PayTermRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>

Rules for Path Parameters

Path parameters are the variables which uniquely identify a resource instance.
These are used in resource URL to get a resource whose identity matches with the
value provided. Below is an example of path param in servicedef xml:

<operation name="find" operationType="READ_WITH_IDENTITY" suffix="outputType">
<input type="Nothing" identifierNameList="sup_xref_key, supplier_id"/>
<output type="SupplierDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
The values of path parameters are passed to service provider layer in
ServiceOpContext object. The names of properties in ServiceOpContext are
prefixed with idParam for path parameters. For example for the above operation
the properties in ServiceOpContext will be following:

idParam. sup_xref_key
idparam.supplier_id

Service Definition Library XML File for Restful services 7-7

Validation rules for a service definition xml for RESTful web services

Rules for Query Parameters

= Query parameters are used for filtering resources based on search criteria. For
example, the resource URL Suppliers/searchAll?country_id=10 is to get all
suppliers for which country_id is 10. To build such query parameter in URL,
queryParamList attribute of input element of operation must contain the
parameter names. Below is an example of operation with query parameter:

<operation name="searchAll" operationType="READ_WITH_ PREDICATE"

suffix="outputType">

<input type="Nothing" queryParamList="customer_type"/>

<output type="CustomerColDesc">

</output>

<fault faultType="IllegalArgumentWSFaultException" />

</operation>
s The values of query parameters are passed to service provider layer in

ServiceOpContext object. The names of properties in ServiceOpContext are
prefixed with queryParam for query parameters. For example for the above
operation the properties in ServiceOpContext will be following:

queryParam.customer_type

Rules for Links

If service provider wants to return additional links to client in response header, they
can set link URLs in ServiceOpContext object. RSE layer looks for properties in
ServiceOpContext, and if there are any properties whose name start with link.rel , then
RSE builds link URL by appending value to that property to the context path of the
service, and if ServiceOpContext contains properties starting with link.url, then it
means that it is an external URL and RSE layer will add that URL as-is in the response
header.

Rules for RelatedTo element

= A service can have relations specified in the outputType of the operation. The
name specified in relatedTo element must be the name of a service which exists in
the same service def xml.

m A service cannot have its own name in relatedTo field.

JSON output
REST services also support JSON response type. To test JSON output, you need to set
Accept=application/json in request header.

Response Codes

REST services contain appropriate HTTP code in response header for success and
failure responses.

7-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

8

This chapter includes standards and conventions for Web service naming and

versioning.

Web Service Naming

The following standards and conventions apply to the naming of Web services.

The Web service name should be a business nhoun, concept or process.

ltem Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale To be in alignment with other Web service standards.

Example Supplier Service

Avoid verbs when naming Web services.

Item Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale Verbs generally are at the operation level, not at the service level.

Example Avoid names such as CreateSupplierService.

The first 30 characters of the Web service name must be unique.

Item Description

Recommendation The first 30 characters of the Web service name must be unique.
Rationale Some systems truncate names at 30 characters.

Example N/A

The integration/services qualifier should be in the namespace.

Item

Description

Web Service Standards and Conventions

Recommendation

The integration/services qualifier should be in the namespace.

Web Service Standards and Conventions

8-1

Web Service Naming

ltem Description
Rationale
Example http:/ /www.oracle.com/retail /rms/integration/services/PayTerm

Service.

The Web service namespace should contain the application short name.

ltem Description

Recommendation The Web service namespace should contain the application short
name.

Rationale Multiple applications may publish services with similar names. To
categorize and identify which application is hosting what service,
the service namespace should contain the application short name.

Example http:/ /www.oracle.com/retail /rms/integration/services/PayTerm

Service.

The Web service type should be document/literal wrapped.

Item Description

Recommendation The Web service type should be document/literal wrapped.
Rationale This is defined in the WSDL.

Example <soap:binding

transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

<operation name="createPayTermBO">
<ns21:PolicyReference
xmlns:ns2l="http://www.w3.org/ns/ws-policy"
URI="#PayTermServicePortBinding_createPayTermBO_WSAT_

Policy"/>

<soap:operation soapAction=""/>
<input>

<soap:body use="literal"/>
</input>

The Web service must comply with Web Service Basic Profile 1.1.

ltem Description

Recommendation The Web service must comply with Web Service Basic Profile 1.1.

Rationale The specification is called the WS-I Basic Profile 1.1. It consists of a
set of non-proprietary Web services specifications, clarifications,
refinements, interpretations, and amplifications of those
specifications which promote interoperability.

Example N/A

8-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Versioning

The Web service operation naming pattern should be
verb<TopLevelComplexType>(TopLevelComplexType variable).

ltem Description

Recommendation The operation name pattern should be either of the following;:

s verb<TopLevelComplexType>(TopLevelComplexType
variable)

= verb<NonTopLevelComplexType>Using<TopLevelComplexType>
(TopLevelComplexType variable).

= Non top level Complex Type cannot be empty, that is in xml we
cannot have something like
<ExtOfReportLocDesc></ExtOfReportLocDesc> or

<ExtOfReportLocDesc/>.

Rationale The operation name should reflect the Top Level Complex Type of
the service’s primary entity object to ensure the name is
unambiguous.

Example createltemListBO

Web Service Versioning

Service versioning is in the namespace, including the application and the version
identifier.

The service namespace is versioned.

Item Description
Recommendation The WSDL for the RBS will have the namespace versioned.
Rationale For breaking changes only, the WSDL for the RBS will have the

namespace versioned.

http:/ /www.oracle.com /retail / <retail
app>/integration/services/<service name>/V<incremental change
number>

Example http:/ /www.oracle.com/retail /rms/integration/services/PayTerm
Service/V2

Web Service Standards and Conventions 8-3

Web Service Versioning

8-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

9

Creating the Java EE Implementation Jar

Creating Web services with different implementations is a three-step process, as
described below.

Note: For creating an implementation class, interface classes are
required.

Step 1: Generate Web Services with Default Implementation
Generate Web services with the default implementation as follows:

1. Provide the Service Definition Library XML file and click Generate Stub to create
a zip file.

2. The zip file contains a jar file with the interface classes for the Web services. The
name pattern of the jar file is <appName>-service-ejb jar.

For example, if the application name in ServiceDef is rms, the jar file name is
rms-service-ejb jar.

The jar file also contains a properties file named
ServiceProviderImplLookupFactory.properties. This file contains the name of the
Web service interface and the class implementing the Web service.

Step 2: Implement Interfaces

Implement the interfaces and create the implementation classes. The classes can be
packaged in a jar file. Upload the jar file while creating the final ear file.

Step 3: Upload the jar

When using the Service Implementation Jar File option to upload the jar containing the
implementations, the default service implementation jar is not included in the .ear file.
Rather, the jar file provided by the user is included. When the Web service is invoked,
the service implementation provided by the user is invoked.

Creating the Java EE Implementation Jar 9-1

Step 3: Upload the jar

9-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

10

Implementation Guidelines

This chapter provides a set of implementation notes that may be helpful when
implementing the Oracle Retail Service-Oriented Architecture Enabler (RSE) tool. The
information included here is intended to provide guidance on the following topics:

s PL/SQL Service Consumer

s PL/SQL Provider Service

= Java EE Web Service Consumer

= Java EE Service Provider

s Web Service Call as a Remote EJB Call
s Web Service Call as a POJO Call

= Deploying the Web Service

s Creating a JDBC Data Source

Important Note About this Chapter

The implementation notes in this chapter are intended to provide some guidance in
the development and deployment of the Web service layer. This information does not
take into account the implementation of the business logic required to complete the
application API layer.

The RSE tool and approaches described in this section are complex. A high level of
skill and knowledge of the product is required to complete these implementation
tasks. Also required is technology specific development of application APIs and the
business logic that is needed to complete it.

Any issues that may arise with development tools, development environments,
custom APlIs, or custom message flows are the responsibility of the customer and not
Oracle Retail.

PL/SQL Service Consumer Implementation Notes

To set up the Web service consumer side proxies, complete the following steps:

Note: See the section, "Important Note About this Chapter".

1. loadjava -u <username>/<password>@<host>:<port>:<SID> -r -v -f -genmissing
dbwsclientws.jar dbwsclientdb102. jar

Implementation Guidelines 10-1

PL/SQL Provider Service Implementation Notes

Note: loadjava is a utility available in Oracle Database.

2. Edit and run *_grant.sql script as sysdba to give the user proper permission.
3. Load the following jars to the database.

Instructions to load jars to database can be found in PLSQLServiceConsumer_
ReadMe.doc packaged with the generated zip file.

= xmlparserv2-<version> jar

» dbwsa-<version> jar

» dbwsclientdbll-<version> jar

= dbwsclientws-<version>.jar

s <WebServiceName>ServiceConsumerjar

= http_client-<version> jar and ReadMe.doc packaged with the generated zip
file

Note: The ojdbc7-<version>.jar should not be loaded, because it is
used only for loading the other jars. If the jar is already loaded, drop
the jar. If you get ORA-29533 while dropping the jar, drop the
individual files.

For example:

dropjava -u
<username>/<password>@<host>:<port>:<SID>packageName/SourceName

4. Run the *Consumer_create.sql in the schema that will use this APIL. The schema
owner is the user granted permission in Step 2.

5. Write a PL/SQL procedure to work as the client to call the Web service. A sample
is provided below:

Note: The following sample code is written for the PayTerm Web
service. Replace the service endpoint URL and the consumer class
name according to the Web service for which the client is generated.

create or replace PROCEDURE wstestClient IS

BEGIN

PayTermServiceConsumer.setEndpoint ('http://example.com:7001/PayTermBean/PayTerm
Service');

dbms_output .PUT_LINE (PayTermServiceConsumer.getEndPoint());
dbms_output.PUT_LINE (PayTermServiceConsumer.ping ('TestMessage'));
dbms_output.PUT_LINE('Done."');

END;

PL/SQL Provider Service Implementation Notes

The distribution (.zip) file includes <appname>-service .ear file that contains all the
generated code for the service; it is ready to be deployed to the application server. The
business logic can be implemented in PL/SQL packages in Oracle. The distribution

10-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Consumer Implementation Notes

contains the specification and body scripts for the packages called by the deployed
service.

To complete implementation, follow these steps:

Note: See the section, "Important Note About this Chapter".

1. Create the PL/SQL service provider distribution file using the RSE tool. The
output of this process is the .zip file.

Note: See Chapter 4,"User Interface Usage".

2. Extract the <service_name>.ProviderImplSpec.sql and <service_
name>ProviderImplBody.sql files from the distribution zip file.

3. These files will be modified to provide a PL/SQL implementation for the service.

4. Extract the <service_name>-service.ear file from the distribution zip file. This file
is the generated Web service that will be deployed.

5. Create the JDBC data source.

Note: See "Creating a JDBC Data Source".

6. If not already deployed, deploy the Oracle Objects to the appropriate database
user.

Note: See the Oracle Retail Functional Artifact Generator Guide.

7. Modify the PL/SQL body file for the business logic implementation. The <service_
name>ProviderImplBody.sql file contains comments about where to implement
logic for each method on the service.

8. Install the modified PL/SQL packages to the database. They will be called by the
Web service methods.

9. Deploy the <service_name>.ear file to the Oracle WebLogic Server.

Java EE Service Consumer Implementation Notes

The Java Web service consumer artifacts generated by this tool are based on the
JAX-WS 2.1 specification. Services can be invoked in synchronous and asynchronous
mode by using these artifacts.

To complete implementation, follow these steps:

Note: See the section, "Important Note About this Chapter".

1. Create a Web service client.

2. Create the application that uses the {WebServiceName}ServiceConsumer.jar and
code your Web service client. The {WebServiceName}ServiceConsumerjar contains
all necessary code to invoke the {WebServiceName}Service WebService.

Implementation Guidelines 10-3

Java EE Service Consumer Implementation Notes

3. Additional JAX-WS library jars might be required.
4. Deploy the service in the server.

5. Invoke the Web service client to see the results.

Sample Client Code

The code below is an example of how to invoke Oracle Retail's PayTerm Web service.
For each Web service, a specific WebServiceConsumer code/jar must be generated that
can "talk to" the service.

Note: The following sample code is for invoking the PayTerm Web
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed accordingly.

import java.math.BigDecimal;

import java.net.URL;

import javax.xml.namespace.QName;

import com.oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermService;
import junit.framework.TestCase;

public class PayTermTest extends TestCase{
public void testCreatePayTerm() {
try{
//gname is the namespace of the web service
QName gName = new
QName ("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1l",
"PayTermService") ;

//wsdlLocation is the URL of the WSDL of the web service
URL wsdlLocation = new
URL ("http://example.com:7001/PayTermBean/PayTermService?WSDL") ;

//get the web service instance
PayTermService service = new PayTermService (wsdlLocation, gName);
PayTermPortType port = service.getPayTermPort () ;

//populate input object for the web service method
PayTermDesc desc = new PayTermDesc();
desc.setTerms ("terms") ;
desc.setDiscdays("1");
desc.setDueDays("1");
desc.setEnabledFlag("t");
desc.setPercent (new BigDecimal ("1"));
desc.setRank("1");

desc.setTermsCode ("code") ;
desc.setTermsDesc ("desc") ;
desc.setTermsXrefKey ("key") ;

//call the web service method. here ref is the response object

10-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Provider Implementation Notes

of the web service.
PayTermRef ref = port.createPayTermDesc (desc);

}catch (Exception e){
e.printStackTrace() ;

}

Java EE Service Provider Implementation Notes

The RSE tool creates the appropriate provider Web service end-points as well as a
skeleton implementation layer where the developer implements business logic. All of
this is packaged inside the provider distribution archive file.

The Java EE Provider distribution file provides a sample deployable application and
all the libraries that can be used to create Web services using retail payloads. The
distribution file follows the naming convention of <appname>_
JavaEEServiceProvider.zip. For example, the distribution file for the RMS application
is named rms_JavaEEServiceProvider.zip. The <rms> prefix must be replaced with the
name of any other application being developed.

The Web services generated by the RSE tool can be implemented and deployed in a
number of ways. This section includes three implementation use cases for reference.

Note: See the section, "Important Note About this Chapter".

Use Case 1: Complete the Generator Provided Stub Code Implementation
1. Generate the distribution file using the RSE tool.

Extract the <service_name>-ejb-impl-src.jar file from the zip file.

Extract the <service_name>-service.ear file from the zip file.

Add business logic code where indicated in the Impl java files.

Use the java jar command to re-build the <service_name>-service-ejb-impl jar file.

Use the jar command to update .ear file with the new implementation jar.

N o a M Db

Deploy the .ear file to the server.

Use Case 2: Provide a Custom impl jar to the RSE Tool

1. Create custom java classes that implement the <service_name>ServiceProvider
interfaces contained in the <service_name>-service-ejb jar file.

2. Extract the ServiceProviderImplLookupFactory.properties file from the .ear file.
3. Modify the properties file to point to your implementation classes for the services.

4. Use the jar command to create a jar containing your implementation classes, as
well as the modified properties file.

5. Run the RSE tool again and provide the new custom implementation jar file.

6. Extract and deploy the generated .ear file to the server.

Implementation Guidelines 10-5

Web Service Call as a Remote EJB Call

Use Case 3: Package the Generated Service Classes in an Existing Application

1.
2.

Generate the distribution file using the RSE tool.

The service interfaces are provided in the <appname>-service-ejb jar file in the
distribution file. This jar file should be included in the application classpath.

Source code of sample implementations for the service interfaces are provided in
the <appname>-service-ejb-src jar file in the distribution file. (If application
developers want to use the same classes in their application, they can extract the
java files from the jar file and include those in application source code. They also
can add their own business logic in the method implementations. If they decide to
write their own implementations, they should make sure that the appropriate
service interfaces are implemented.)

After writing the Web service implementations, the java files should be compiled.
The class files can be included in a new jar file or in the same jar file used for the
rest of the classes of the application.

Modify the ServiceProviderImplLookupFactory.properties file to include
appropriate class names of service implementations and include it in application
classpath. A recommended approach is to include the properties file in the jar file
that contains the service implementation classes.

Make sure that the following jar files are included in the application ear file:
= <appname>-service-ejb.jar

= Jar file containing the service implementation classes

= jaxb-apijar

= retail-public-payload-java-beans-base-<version> jar

s retail-public-payload-java-beans-<version> jar

= retail-soa-enabler-<version> jar

Include an ejb-module in the application.xml of the application. The module name
should be same as the name of <appname>-service-ejb jar file.

The .ear file is ready for deployment on the server.

Web Service Call as a Remote EJB Call

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

A client can call a Web service as a remote EJB call to improve performance by
avoiding marshalling and unmarshalling.

Prerequisites

Note: See the section, "Important Note About this Chapter".

The following is a list of prerequisites to implementation.

1.

2.
3.

Get the updated wlfullclient7-12.2.1 jar (integration-lib/lib)&
retail-soa-enabler-<version> jar (/integration-lib/) from the Repository.

Run build.gradle for retail-soa-enabler.

Generate the .ear and deploy it to server.

10-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a Remote EJB Call

4. Configure the data source in the server.

Procedure

Complete the following steps.

1. Create a Java file containing the code below inside any package. (See code sample
at the end of this section.)

2. Include the following jar files in the classpath:

= retail-public-payload-java-beans-base-<version> jar

s retail-public-payload-java-beans-<version> jar

= oo-jaxb-bo-converter-<version>.jar

= retail-soa-enabler-<version> jar

= <appname>-service-ejb.jar

3. Run code as a Java application.

Note: The sample code below obtains a context for accessing the
WebLogic naming service and calls a lookup method to get the Object
inside the container by providing a binding name. It then calls a
corresponding Web service method. As an example, the code sample
calls the PayTerm service.

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.
import com.

import

com.oracle.

i

import

com.oracle.

n;
import
com.oracle

oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;
oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

retail.integration.services.exception.vl.EntityNotFoundWSFaultException

retail.integration.services.exception.vl.IllegalArgumentWSFaultExceptio

.retail.integration.services.exception.vl.IllegalStateWSFaultException;
import com.

oracle.retail.rms.integration.services.paytermservice.vl.PayTermRemote;

public class WebLogicEjbClient {

public static void main(String[] args) throws NamingException,
IllegalArgumentWSFaultException, EntityNotFoundWSFaultException,
IllegalStateWSFaultException {

Context ctx = getInitialContext("t3://localhost:7001", "<WLS

user>","<WLS password>") ;

Object ref

= ctx .lookup ("PayTerm#com.oracle.retail.rms.integration.services.

paytermservice.vl.PayTermRemote") ;

PayTermRemote remote = (PayTermRemote) (ref);

PayTermRef ref = new PayTermRef ();
PayTermDesc desc = remote.findPayTermDesc (ref);

Implementation Guidelines 10-7

Web Service Call as a POJO Call

System.out.println("findPayTermDesc=" + desc);

static Context getInitialContext (String url, String user, String password)
throws NamingException {

Properties h = new Properties();

h.put (Context .INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
h.put (Context.PROVIDER_URL, url);

h.put (Context.SECURITY_PRINCIPAL, user);

h.put (Context.SECURITY_CREDENTIALS, password);
return new InitialContext (h);

Code Description
Code sample 1:
Context ctx = getInitialContext("t3://localhost:7001", "<WLS user>","<WLS
password>") ;
Description: Gets Initial Context object by passing the URL (local WebLogic URL, if
not configured to other), user name, and password of the server.
Code sample 2:

Object ref = ctx .lookup("PayTerm#com.oracle.retail.rms.integration.services.
paytermservice.vl.PayTermRemote") ;

Description: Lookup method retrieves the name of Object. Throws naming exception if
the binding name is missing from the server. Binding name can be found after
deploying the .ear file to the server, at JNDI Tree Page. (Summary of Servers
>examplesServer>view JNDI Tree).

Code sample 3:

PayTermRemote remote = (PayTermRemote) (ref);

Description: Create PayTermRemote object by casting ref object.
Code sample 4:

PayTermRef ref = new PayTermRef();
PayTermDesc desc = remote.findPayTermDesc (ref);

Description: Invoked Web service method findPayTermDesc as a remote call.
Depending on the requirement, the user can vary the binding name and create a
different object to invoke the Web service deployed to the server as a remote E]B call
using the above code.

Web Service Call as a POJO Call

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

10-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a POJO Call

Procedure

If an application is a core Java application, it can still call the Web services classes, but
as POJO classes. In this case, the Web service classes act as simple Java classes, and
there is no marshalling of XML involved, nor a remote call as an EJB.

The PL/SQL provider services need a database connection to call PL/SQL packages.
In the case of a Web service call or an EJB call, the service gets the connection from the
data source supplied by the Java EE container through resource injection. But in the
case of a Java application, the data source is not available through this mechanism. The
connection must be passed to the Web service class before invoking any business
methods on it. To achieve this, the caller application must create an instance of the Web
service class using the non-default constructor available in the service bean class. An
example of the signature of the constructor is below:

public PayTermBean (Connection conn,Map<String, String> serviceContext)

Note: The bean class is available in the <appname>-service-ejb.jar for
each Web service generated. For example, if the service name is
PayTerm in the service definition XML, the name of the generated
bean class will be PayTermBean. This is the class that should be used
to call a Web service as a POJO.

In the constructor shown above, the first parameter is for database connection. The
second parameter is for the calling application to provide any additional parameters to
the bean passed on to the PL/SQL package. When the bean is called as a Web service,
an instance of ServiceOpContext class is created by using properties available from an
instance of javax.xml.ws.WebServiceContext, available through resource injection.
When the bean is called as E]B, an instance of ServiceOpContext is created from the
values in an instance of javax.ejb.EJBContext, available through resource injection. But
when the bean is called as a POJO, none of these objects is available. Therefore, a map
has been added in the constructor so that the calling application can set the required
values. If a null object is passed to the constructor for the map, an empty instance of
ServiceOpContext is created. If the map contains a key named "user," a Principal object
is created with the value of that key, and it is set in the ServiceOpContext object.

Complete the following steps.

Note: See the section, "Important Note About this Chapter".

1. Generate the .ear file for Web services and extract the following jar files from it:
= retail-public-payload-java-beans-base-<version>.jar
» retail-public-payload-java-beans-<version> jar
= 0o-jaxb-bo-converter-<version>.jar
= retail-soa-enabler-<version> jar
m <appname>-service-ejb.jar

2. Include these jar files in the classpath of the Java application that is going to
invoke the beans as POJO classes.

3. Write the code to call the bean classes. (Sample code is provided below in this
section.)

Implementation Guidelines 10-9

Web Service Call as a POJO Call

4. Run the calling class.

Note: The connection must be committed or rolled back by the
calling application. Because there is no Java EE container available in
this case, the bean cannot start and end a transaction. Therefore, it is
the responsibility of the calling application to manage the transaction
and the connection. In the following sample code, the calling class is
committing the connection in case of a successful response from the
bean, and it is rolling back the connection in case of any exception
thrown by the Web service. The calling application determines how it
wants to handle exceptions.

Sample Code for POJO Invocation

public class PayTermService extends TestCasef{

public void testPayTerm() {
Connection conn = null;

try{
//get the database connection
Class.forName ("oracle.jdbc.OracleDriver");
conn
=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:0rcl", "<username>",

"<password>") ;

//create map for ServiceOpContext
Map<String, String> ctxMap = new HashMap<String, String>();
ctxMap.put ("<username>", "<password>");

//instantiate the web service bean class
PayTermBean bean = new PayTermBean (conn,ctxMap) ;

//populate the input object for web service method
PayTermRef ref = new PayTermRef () ;

ref.setTerms ("terms");

ref.setTermsXrefKey ("key") ;

//call the web service.here desc is the response object
PayTermDesc desc = bean.findPayTermDesc (ref);

//print the response object value
System.out.println("desc value="+desc.getTerms());

//commit the database connection
conn.commit () ;
}catch (Exception e){
e.printStackTrace();
try{
conn.rollback();
}catch (SQLException se) {
se.printStackTrace() ;
}
}finally{
if(conn !=null){
try{
conn.close();
}catch (SQLException se) {
se.printStackTrace();

10-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Deploying the Web Service

Deploying the Web Service

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

Note: See the section, "Important Note About this Chapter".

Complete the following steps using the WebLogic Server Administration Console:

1.

©® N o o

10.
11.
12.
13.
14.

If necessary, click Lock and Edit on the left navigation bar to enable the Install
button

Navigate to the Deployments page.
Click Install.

Note: If the service application has already been installed, see
"Redeploy the Service Application".

The Locate deployment to install and prepare for deployment screen is
displayed. Follow the instructions to locate the <service-name>.ear file on the
WebLogic Server host

If rib-home is located on a host other than the Oracle WebLogic Server, select
Upload Files. On the Upload a Deployment to the admin server screen, use the
browse button to locate the <service-name>.ear file in the Deployment Archive.

Select the <service-name>.ear.
Click Next to move to Choose targeting style.
Select Install this deployment as an application.

Click Next to move to Select deployment targets. Here select the server to which
you want the ear file to be deployed.

Click Next to move to Optional Settings. Here in the Security section, select the
option Custom Roles and Policies:Use only roles and policies that are defined in
the Administration Console. This is required to be able to attach roles and policies
to secure the web services.

Click Next to move to Review your choices and click Finish.
Select No, I will review the configuration later.

Click Finish to deploy the application.

Click Activate Changes to commit changes to server.

Go to Deployments page, select the service application and click on Start >
Servicing all requests to start the application and change the status to Active.

Implementation Guidelines 10-11

Creating a JDBC Data Source

Redeploy the Service Application

If the <service-name> application has already been deployed, follow these steps:

1.

If the <service-name> application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

Select Delete.
The Summary of Deployments should now not include the <service-name>.ear.

Return to "Deploying the Web Service".

Verify the Service Application Installation Using the Administration Console

To verify the Service installations using the Oracle WebLogic Administration Console,
follow these steps.

-

© ® N o o & 0 DN

Note: See Oracle WebLogic Server 12¢ Release 1 (12.2.1.3.0)
documentation about the Administration console.

Navigate to the Deployments screen.

Locate the <service-name>.ear on the Summary of Deployments screen.

Click plus sign next to the <service-name>.ear to expand the tree.

Locate the Web services section.

Click any Web service to move to Settings for <service name>.ear Service screen.
Click the Testing tab.

Click plus sign next to the service name to expand the tree.

Click the Test Client link to move to the WebLogic Test Client screen.

Select Ping Operation.

10. The test page will show the request message and the response message.

Creating a JDBC Data Source

This section applies to PL/SQL Web service implementations and to Java EE Web
service implementations.

To create a JDBC Data Source, follow these steps:

Note: See the section, "Important Note About this Chapter".

Log in to the WebLogic administration console. Use the URL,
http:/ / <host>:<listen port>/console/login/LoginForm.jsp.

Navigate the domain structure tree to Services/Data Sources.
Click New to start creating the new Data Source. Enter the required information:
Name: Enter any name for the data source.

JNDI name: This field must be set to jdbc/RetailWebServiceDs. The generated
code for the service will use this JNDI name to look up the data source.

10-12 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Creating a JDBC Data Source

10.

11.

12.

Select the transaction options for your data source and click Next.
Enter the database name and user information for the data source. Click Next.

The screen includes the connection information for your data source. Click Test
Configuration to ensure the connection information is correct. If it is correct, the
following message is displayed: "Connect test succeeded."

Click Next and select a server to deploy the data source to. This is not necessary at
this point if you want to deploy the data source to a server at a later time.

Click Finish to complete the data source setup. The new data source is displayed
on the data sources screen.

Click the new data source to view the properties. A default connection pool is
created for the data source. Click the Connection Pool tab to view the connection
pool properties.

The generated JDBC connection URL for the data source is displayed. The Oracle
URL is formatted as follows: jdbc:oracle:thin:@<hostname>:<port>:<sid>
(jdbc:oracle:thin:@<hostname>:<port>/<sid> for service connections).

For example: jdbc:oracle:thin:@localhost:1521:0rc
If the database is a RAC database, the URL should be in the following format

jdbc:oracle:thin:@ (DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= <host>) (PORT = <port>)) (ADDRESS = (PROTOCOL = TCP) (HOST = <host>) (PORT =
<port>)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_NAME = <sid>)))

For example:

jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= dbhostl.example.com) (PORT = 1521)) (ADDRESS = (PROTOCOL = TCP) (HOST =
dbhostl.example.com) (PORT = 1521)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_
NAME = orcl)))

Restart the WebLogic instance to apply the data source changes.

Implementation Guidelines 10-13

Creating a JDBC Data Source

10-14 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

11

Implementation Guidelines

This chapter provides a set of implementation notes that may be helpful when
implementing the Oracle Retail Service-Oriented Architecture Enabler (RSE) tool. The
information included here is intended to provide guidance on the following topics:

s PL/SQL Provider Service

= Java EE Service Provider

= Deploying the Web service

s Creating a JDBC Data Source

Important Note About this Chapter

The implementation notes in this chapter are intended to provide some guidance in
the development and deployment of the Web service layer. This information does not
take into account the implementation of the business logic required to complete the
application API layer.

The RSE tool and approaches described in this section are complex. A high level of
skill and knowledge of the product is required to complete these implementation
tasks. Also required is technology specific development of application APIs and the
business logic that is needed to complete it.

Any issues that may arise with development tools, development environments,
custom APlIs, or custom message flows are the responsibility of the customer and not
Oracle Retail.

PL/SQL Consumer using Web Service Call-Out Utility Implementation

Notes

To set up the Web service consumer side proxies, complete the following steps:

The Oracle database needs to get configured so that it can make WebService calls. This
setup proce-dure requires sysdba permissions. The operating system commands must
be executed by the OS us-er that owns Oracle Database installation, or has proper
read /write/execute permission to Oracle Database installation folders.

Install Oracle JVM Web Services Call-Out Utility

Oracle JVM Web Services Call-Out Utility allows Oracle Database to make WebService
calls. Installing WebService Call-Out utility prepares and configures the Oracle
database to be able to make network calls out of the database.

Implementation Guidelines 11-1

PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes

Verify environment variables and export if needed
1. Login to linux box as the user that has installed Oracle 12.2.0.1 database.

2. env | grep ORACLE
ORACLE_BASE=/u00/oracle
ORACLE_HOME=/u00/oracle/product/12.2.0.1
ORACLE_SID=sqlnet

export JAVA_ HOME=$ORACLE_HOME/jdk
export PATH=$0ORACLE_HOME /bin:$PATH
export PATH=$JAVA_HOME /bin:$PATH

which java

N o a > @

java -version

Note: Verify all your variables are pointing to right locations.

Create OJVMWCU_INSTALL User
1. Login to sqlplus as sys dba.

sqlplus sys/<password>@<DB_SERVICE_NAME> as sysdba
2. Create a user with exact name as OJVMWCU_INSTALL in DB.

create user O)VMWCU_INSTALL identified by <OJVMWCU_INSTALL_
PASSWORD>;

Note: Oracle documentation states that the name cannot be different,
it must be OJVMWCU_INSTALL

Install OJVMWCU

Install OJVMWCU using the oracle database provided install script(install
ojvmwecu.sql). Note down the password, it is recommended to keep the password
same as sys users and application code will never need this password. Execute the
following commands.

1. cd <ORACLE_HOME> /javavm/ojvmwcu/install
2. sqlplus sys/<SYS_PASSWORD>@<DB_SERVICE_NAME> as sysdba
3. SQL> @install_ojvmwcu.sql

Enter value for 1: <OJVMWCU_INSTALL_PASSWORD>

Package created.

0old 24: execute immediate 'create user ' || install_schema || ' identified
by &1';
new 24: execute immediate 'create user ' || install _schema || ' identified

by password';

Package body created.

WCU: Configuring ojvmwcu

11-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes

Call completed.

drop role ojvmwcu
create role ojvmwcu
grant ojvmwcu to SYS

Call completed.
WCU: Done Configuring ojvmwcu

Call completed.

Package created.

Package body created.
WCU: Loading Jersey jars
Call completed.

WCU: Loading - ojvmwcu-security.jar

WCU: Loading - jersey-guava-2.22.l1.jar

WCU: Loading - javax.inject-2.4.0-b31.jar

WCU: Loading - hk2-utils-2.4.0-b31.jar

WCU: Loading - org.osgi.core-4.2.0.jar

WCU: Loading - osgi-resource-locator-1.0.1.jar
WCU: Loading - oracle-hk2.jar

WCU: Loading - asm-debug-all-5.0.4.jar

WCU: Loading - oracle-jaxrs-ri.jar

WCU: Loading - javassist-3.18.1-GA.jar

WCU: Loading - aopalliance-repackaged-2.4.0-b31.jar

Call completed.

WCU: Done Loading Jersey jars
Call completed.

SQL>

Make sure you get successful output before proceeding.

Note:

= You must create the OJVMWCU_INSTALL schema before running
the install_ojvmwcu. sql script. The
install_ojvmwcu. sqgl script checks whether the 0OJVMWCU_
INSTALL schema is present in the database or not. If not, then it
displays a message that the schema is not present and stops
running.

s The OJVMWCU_INSTALL schema is created only for using the
Oracle JVM Web Services Call-Out Utility and should not be used
for any other purpose.

Create the user that will call WebServices from the Database
1. sqlplus sys/<SYS_PASSWORD>@<DB_SERVICE_NAME?> as sysdba

Implementation Guidelines 11-3

PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes

2, create user <KWEB_SERVICE_CALLER_USER> identified by <WEB_SERVICE_
CALLER_PASSWORD>;

GRANT CREATE SESSION TO <WEB_SERVICE_CALLER_USER>;
GRANT DBA TO <WEB_SERVICE_CALLER_USER>;

grant OJVMWCU to <WEB_SERVICE_CALLER_USER>;

SELECT * FROM DBA_ROLES;

o o k~ w

Note: Make sure <WEB_SERVICE_CALLER_USER> has role
OJVMWC(CU:

SELECT *
FROM DBA_ROLE_PRIVS
WHERE GRANTEE = 'WEB_SERVICE_CALLER _ USER};

Grant permission and create synonyms
Permissions and synonyms are created from user schema to ojvmwcu_install schema.

1. cd <ORACLE_HOME-> /javavm/ojvmwecu/install
2. sqlplus sys/<SYS_PASSWORD>@<DB_SERVICE_NAME> as sysdba
3. SQL>@export_ojvmwecu_classes.sql <WEB_SERVICE_CALLER_USER>;

Check for invalids in both ojvmwcu_install and <WEB_SERVICE_CALLER_USER>
schema:

SELECT count(*) "invalid" FROM user_objects WHERE status <> 'VALID';

If invalids are found, fix them.

Grant permission to the user

Give the java classes various permission. Execute the dbms_java.grant_permission()
call from sqlplus.

1. sqlplus sys/<SYS_PASSWORD>@<DB_SERVICE_NAME?> as sysdba

2. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:java.util. PropertyPermission’,
‘com.sun.xml.ws.transport.http.client. HttpTransportPipe.dump’, 'write');

3. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:java.util. PropertyPermission’,
‘com.sun.xml.internal.ws.transport.http.client. HttpTransportPipe.dump’, 'write');

4. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:java.util. PropertyPermission’,
‘com.sun.xml.ws.transport.http.HttpAdapter.dump', 'write');

5. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:java.util. PropertyPermission’,
‘com.sun.xml.internal.ws.transport.http. HttpAdapter.dump', 'write');

6. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS;java.lang.reflect.ReflectPermission’, 'suppressAccessChecks’, ");

7. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS;java.io.FilePermission', '/u00/oracle/product/12.2.0.1/basename’, 'read")

11-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes

Note: This step assumes ORACLE_
HOME-=/u00/oracle/product/12.2.0.1

8. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:java.lang. RuntimePermission’,
‘accessClassInPack-age.com.sun.xml.internal.bind.v2.model.annotation’, ")

9. call dbms_java.grant_permission('<WEB_SERVICE_CALLER _
USER>','SYS:java.util.logging.LoggingPermission', 'control’, ");

10. call dbms_java.grant_permission('<WEB_SERVICE_CALLER_USER>',
'SYS:oracle.aurora.rdbms.HandlePermission', 'HandleInputStream. <WEB_
SERVICE_CALLER_
USER>:com.sun.xml.internal.bind.v2.runtime.reflect.opt.Field Accessor_Ref’, 'read’

);

Note: You can do the following as well, but with
PlsqlServiceConsumerImpl_grant.sql

SQL>@<INSTALL_DIR>/PlsqlServiceConsumerImpl_grant.sql

Load RBO Oracle Objects into the database

The PLSQL Retail Business Objects(RBOs) are reused in the service consumer. The
RBOs needs to be installed so the user <WEB_SERVICE_CALLER_USER> have access
to it.

Note: If PLSQL RBOs are already installed for
<WEB_SERVICE_CALLER_USER> user then skip this step.

Al ROB sql files are available inside
re-tail-public-payload-database-object-types-<CURRENT_VERSION> jar

1. Unzip the file retail-public-payload-database-object-types-<CURRENT_
VERSION> jar

2. cd to the folder that has the *.sql files.

3. sqlplus <WEB_SERVICE_CALLER_USER>/<WEB_SERVICE_CALLER _
PASSWORD>@<DB_SERVICE_NAME>

4. Run the SQL file InstallAndCompileAllRibOracleObjects.sql from sqlplus.

Note: Make sure there are no invalid objects.

Create activity logging table

The WebService consumer logs all major activity in a table called service_log_entries to
make it easier to debug. Create the table in <WEB_SERVICE_CALLER_USER> user.

1. sqlplus <WEB_SERVICE_CALLER_USER>/<WEB_SERVICE_CALLER _
PASSWORD>@<DB_SERVICE_NAME>

2. SQL>@<INSTALL_DIR>/service_log_enteries.sql

Implementation Guidelines 11-5

PL/SQL Provider Service Implementation Notes

Note: Verify that the table got created properly.

Load WebService java code into database

The consumer zip file generated using RSE includes the jar files which need to be
loaded into the da-tabase. Following is the list of jars that need to be loaded:

1. <WebServiceName>ServiceConsumer.jar
<WebServiceName>ServiceConsumerPlsqllmpl.jar
oo-jaxb-bo-converter-<CURRENT_VERSION> jar
retail-public-webservice-consumer-util-<CURRENT_VERSION> jar
retail-private-plsql-webservice-consumer-<CURRENT_VERSION> jar
retail-public-payload-database-object-types-<CURRENT_VERSION> jar
retail-public-payload-java-beans-<CURRENT_VERSION> jar
retail-public-payload-java-beans-base-<CURRENT_VERSION> jar

® N o g » 0 b

Run loadjava oracle database utility to load the java code into the database. loadjava
should be executed by the oracle db user that has permission to Oracle database install
folders.

loadjava -thin -verbose -resolve -force -user <WEB_SERVICE_CALLER_USER>/<WEB_
SERVICE_CALLER_PASSWORD>@<DB_HOST_ NAME>:<DB_PORT>/<DB_SERVICE_NAME>
<INSTALL_DIR>/retail-public-payload-java-beans-base-<CURRENT VERSION>.jar
<INSTALL_DIR>/retail-public-payload-java-beans-<CURRENT VERSION>.jar
<INSTALL_DIR>/o0o-jaxb-bo-converter-<CURRENT_VERSION>.jar
<INSTALL_DIR>/retail-public-webservice-consumer-util-<CURRENT_VERSION>.jar
<INSTALL_DIR>/retail-private-plsqgl-webservice-consumer-<CURRENT_VERSION>.jar
<INSTALL_DIR>/<WebServiceName>ServiceConsumer. jar
<INSTALL_DIR>/<WebServiceName>ServiceConsumerPlsqglImpl.jar

Check for invalids in <WEB_SERVICE_CALLER_USER> schema. If invalids are
found, fix them:

SELECT count (*) "invalid" FROM user_objects WHERE status <> 'VALID';

Load WebService plsql code into database

Run the <WebServiceName>ServiceConsumerPlsqllmpl_create.sql in the
same(<WEB_SERVICE_CALLER_USER>) schema where consumer code will be
running. This sql file contains the PLSQL package which are used for invoking the
web service. The service consumer package name follows the naming convention
<WebServiceName>_SC. For example, if the web ser-vice name is
GlAccountValidation, then the packages created by this script will be
GlAc-countValidation_SC.

1. sqlplus <WEB_SERVICE_CALLER_USER>/<WEB_SERVICE_CALLER_
PASSWORD>@<DB_SERVICE_NAME>

2. SQL>@<INSTALL_DIR>/<WebServiceName>ServiceConsumerPlsqlImpl_
create.sql

PL/SQL Provider Service Implementation Notes

The distribution (.zip) file includes a .ear file that contains all the generated code for
the service; it is ready to be deployed to the application server. The business logic can

11-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Provider Implementation Notes

be implemented in PL/SQL packages in Oracle. The distribution contains the
specification and body scripts for the packages called by the deployed service.

To complete implementation, follow these steps:

Note: See Important Note About this Chapter.

1. Create the PL/SQL service provider distribution file using the RSE tool. The
output of this process is the .zip file.

Note: See Chapter 5, "User Interface Usage".

2, Extract the <service_name>ProviderImplSpec.sql and <service_
name>ProviderImplBody.sql files from the distribution zip file.

These files are modified to provide a PL/SQL implementation for the service.

3. Extract the <appname>-service.ear file from the distribution zip file. This file is the
generated Web service that is deployed.

4. Create the JDBC data source.

5. If not already deployed, deploy the Oracle Objects to the appropriate database
user.

Note: See the Oracle Retail Functional Artifact Generator Guide.

6. Modify the PL/SQL body file for the business logic implementation. The <service_
name>ProviderImplBody.sql file contains comments about where to implement
logic for each method on the service.

7. Install the modified PL/SQL packages to the database. They are called by the Web
service methods.

8. Deploy the <appname>-rest-service.ear file to the WebLogic Application Server.

Java EE Service Provider Implementation Notes

The RSE tool creates the appropriate provider restful resources as well as a skeleton
implementation layer where the developer implements business logic. All of this is
packaged inside the provider distribution archive file.

The Java EE Provider distribution file provides a sample deployable application and
all the libraries that can be used to create Web services using retail payloads. The
distribution file follows the naming convention of <appname>_
JavaEEServiceProvider.zip. For example, the distribution file for the RMS application
is named rms_JavaEEServiceProvider.zip. The <rms> prefix must be replaced with the
name of any other application being developed.

The Web services generated by the RSE tool can be implemented and deployed in a
number of ways. This section includes three implementation use cases for reference.

Note: See the section, Important Note About this Chapter.

Implementation Guidelines 11-7

Java EE Service Provider Implementation Notes

Use Case 1: Complete the Generator Provided Stub Code Implementation

1.

N o a M Db

Generate the distribution file using the RSE tool.

Extract the <appname>-service-ejb-impl-src jar file from the zip file.

Extract the <appname>-rest-service.ear file from the zip file.

Add business logic code where indicated in the Impl java files.

Use the java jar command to re-build the <appname>-service-ejb-impl jar file.
Use the jar command to update .ear file with the new implementation jar.

Deploy the .ear file to the server.

Use Case 2: Provide a Custom impl jar to the RSE Tool

1.

Create custom java classes that implement the <service_name>ServiceProvider
interfaces contained in the <appname>-service-provider.jar file.

Extract the ServiceProviderImplLookupFactory.properties file from the .ear file.
Modify the properties file to point to your implementation classes for the services.

Use the jar command to create a jar containing your implementation classes, as
well as the modified properties file.

Run the RSE tool again and provide the new custom implementation jar file.

Extract and deploy the generated .ear file to the server.

Use Case 3: Package the Generated Service Classes in an Existing Application

1.
2.

Generate the distribution file using the RSE tool.

The service interfaces are provided in the <appname>-service-provider.jar file in the
distribution file. This jar file should be included in the application classpath.

Source code of sample implementations for the service interfaces are provided in
the <appname>-service-ejb-impl-src jar file in the distribution file. (If application
developers want to use the same classes in their application, they can extract the
java files from the jar file and include those in application source code. They also
can add their own business logic in the method implementations. If they decide to
write their own implementations, they should make sure that the appropriate
service interfaces are implemented.)

After writing the Web service implementations, the java files should be compiled.
The class files can be included in a new jar file or in the same jar file used for the
rest of the classes of the application.

Modify the ServiceProviderImplLookupFactory.properties file to include
appropriate class names of service implementations and include it in application
classpath. A recommended approach is to include the properties file in the jar file
that contains the service implementation classes.

Make sure that the following jar files are included in the application ear file:
» <appname>-service-provider.jar

= Jar file containing the service implementation classes

» jersey-clientjar

= retail-public-payload-java-beans-base-<version> jar

11-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Creating a JDBC Data Source in WebLogic

s retail-public-payload-java-beans-<version>.jar
= retail-soa-enabler-<version> jar

Include web-module in the application.xml of the application. The module name
should be same as the name of <appname>-rest-service.war file.

The .ear file is ready for deployment on the server.

Deploying the Web Service

Below are the steps for installing the <service-name>.ear on WebLogic:

1.
2
3.

10.

Create managed server on Weblogic for REST deployment.

Make sure that the managed server is up and running.

Create datasource as listed in the section

Creating a JDBC Data Source in WebLogic.

After creating data source, navigate to Deployments Page.

Click "Lock and Edit" located on the right side pane.

Click Install. Browse the <appname>-rest-service.ear file to deploy and click
OK.

Use managed server created above to deploy.The deployed application is listed
under Deployments and should be in Active State.

The URL to test a web service is like this:
http:/ / <host>:8080/rms-rest-service/SupplierResource /4/5.

In the above example, "rms-rest-service" is the context of web application in ear
file, SupplierResource is the name of service, and the numbers are values supplied
for path parameters for the web service.

The above URL makes a call to the GET method of the web service.

For testing all other operations you can install SOAP-UI. And provide the URL of
the WADL to create test cases. A sample URL of the WADL is
http:/ / <host>:8080/rms-rest-service /application.wadl

It will show all the operations that are available for a web service. You can enter
request xml and execute the web service method.

Creating a JDBC Data Source in WebLogic

To create a JDBC Data Source in WebLogic Server, follow these steps:

1.

N o g » 0 Db

Select Data Sources from Home Page.

Click Lock & Edit located in the right pane.

Click New and select Generic Data Source from pop down.
Select Resource Type as javax.sql.DataSource.

Enter Name as, RetailWebServiceDs.

Enter JNDI Name as, jdbc/RetailWebServiceDs and Click Next.

Select Database Driver as, "Oracle's Driver(Thin) for Service connection;
Versions:Any.

Implementation Guidelines 11-9

Creating a JDBC Data Source in WebLogic

8. Click Next button. Uncheck the option for "Supports Global Transcations" and
click Next.

9. In Connection Properties section, enter the following details:
s DatabaseName: <sid>
= Host Name: <host name>
s Port: <port number>
» password: <database password>
s Confirm Password: <Same database password as above>
10. Click Next.
11. Click the Test Configuration button.
12. After Connection test succeeded, Click Next.
13. Select Managed server that is created for REST service deployment.

14. Click Finish.

11-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

12

Web Services Security Setup Guidelines

There are numerous ways to build or implement secured service to protect the SOA
infrastructure against attack. Standards allow policies to be applied to SOA, thus
allowing controlled usage and monitoring and provide security ramifications in
enterprise integration. Standards such as WS-Security, SAML, WS-Trust, WS-Secure
Conversation and WS-SecurityPolicy focus on the security and identity management
aspects of SOA implementations that use web services.

The WS-* architecture is a set of standards-based protocols designed to secure Web
service communication. WebLogic Web services use WS-Policy files to enable a
destination endpoint to describe and advertise its Web service reliable messaging
capabilities and requirements. The WS-Policy specification provides a general purpose
model and syntax to describe and communicate the policies of a Web service.

These WS-Policy files are XML files that describe features such as the version of the
supported WS-ReliableMessaging specification, the source endpoint's retransmission
interval, the destination endpoint's acknowledgment interval, and so on.

The web services exposed by Oracle retail applications are used as service providers in
Retail Service Backbone (RSB) architecture. Please refer to RSB documentation for
more details about RSB architecture. The Oracle Retail application services are used as
edge application services in RSB and they are consumed by Web services through the
OSB 12.2.1.3.0 layer. When used with RSB, the Oracle Retail application services are
not consumed directly, instead the consumers invoke OSB 12.2.1.3.0 services which in
turn invoke the Oracle retail application services. Due to these requirements, Oracle
Retail application services need to be secured with WebLogic Web service polices,
which are interoperable with OWSM policies. Following is the list of WebLogic Web
service policies that are currently supported for securing application services.

1. Username token over SSL: The following WebLogic policy is used for username
token over SSL, it is also referred to as PolicyA in RSB documentation:

Wssp1.2-2007-Https-UsernameToken-Plain.xml:

2. Username token with Message Protection: Following is the set of policies which
are used to secure services with username token and message protection. This is
also referred to as PolicyB in RSB documentation:

Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml
Wssp1.2-2007-SignBody.xml
Wssp1.2-2007-EncryptBody.xml

Web Services Security Setup Guidelines 12-1

Client-Side Setup

This document doesn't go into the detailed steps for securing Web services. The
detailed step-by-step instructions are provided in RSB Security Guide. Refer to that
document for more details.

Client-Side Setup

Web services can be invoked from Java clients as well as PL/SQL clients. This section
describes the configuration for invoking a secured Web service from both clients.

Java Client Setup

Client code for calling Web services can be generated using the Java consumer option
of the retail-soa-enabler-gui-<version> tool. The generated zip file contains all the jar
files required for the classpath of the application that calls the Web service. To run the
client, follow the steps required to run Java consumer.

The following is sample code for calling a secured Web service.

Note: The code below is sample code for invoking the PayTerm
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed appropriately.

package com.oracle.retail.rms.client;

import java.net.URL;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;

import com.oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermService;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import junit.framework.TestCase;

public class PayTermClient extends TestCasef{
public void testFindPayTerm() {
try{
//aName is namespace of the service
QName gName = new
QName ("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1","P
ayTermService") ;

// url is the URL of the WSDL of the web service

12-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Client-Side Setup

URL url = new
URL ("http://example.com:7001/PayTermBean/PayTermService?WSDL") ;

//create an instance of the web service
PayTermService service = new PayTermService (url, gName) ;
PayTermPortType port = service.getPayTermPort () ;

//set the security credentials in the service context
List credProviders = new ArrayList();
CredentialProvider cp = new
ClientUNTCredentialProvider ("<username>", "<password>") ;
credProviders.add(cp) ;
Map<String, Object> rc =
((BindingProvider)port) .getRequestContext () ;
rc.put (WSSecurityContext .CREDENTIAL_PROVIDER_LIST,
credProviders) ;

//populate the service method input object
PayTermRef ref = new PayTermRef () ;
ref.setTerms ("terms") ;
ref.setTermsXrefKey ("key") ;

//call the web service.here desc is the response object
PayTermDesc desc = port.findPayTermDesc (ref);

System.out.println("desc="+desc);
}catch (Exception e) {
e.printStackTrace();

PL/SQL Client Setup for WS with Call-out

Client code for calling Web services can be generated using the PL/SQL consumer
option of the retail-soa-enabler-gui-<version> tool. The generated zip file contains all
the jar files and PL/SQL code required to invoke the web service from PL/SQL. To run
the client, follow the steps required to run PL/SQL consumer.

The following is a sample PL/SQL procedure for calling a secured Web service.

Note: The code below is sample code for invoking the
GlAccountValidation service. When you generate PL/SQL
consumer for a Web service, the generated jar file will contain classes
specific to that Web service. Use the appropriate classes in the client
code. Service namespace and WSDL location should also be changed
appropriately.

Write a PL/SQL procedure which will work as the client to call the web service. An
example is given below for reference:

Example: The following is an example procedure to call
GlAccountValidationService web service.

create or replace PROCEDURE GlAccountValidationClient AS
BEGIN

Web Services Security Setup Guidelines 12-3

Client-Side Setup

DECLARE

ARGO VARCHAR2 (200) ;
v_ReturnValue VARCHAR2 (5000);
ribObject RIB_OBJECT;

GLAcctDesc_REC "RIB_GLAcctDesc_REC";
GLAcctDesc_TBL "RIB_GLAcctDesc_TBL";
GLAcctColDesc_REC "RIB_GLAcctColDesc_REC";

GLAcctColRef REC "RIB_GLAcctColRef REC";

BEGIN

GLAcctDesc_REC := "RIB_GLAcctDesc_REC" (1, 'RMS', 1);

GLAcctDesc_TBL := "RIB_GLAcctDesc_TBL"();

GLAcctDesc_TBL.EXTEND (1) ;

GLAcctDesc_TBL (1) := GLAcctDesc_REC;

GLAcctColDesc_REC := "RIB_GLAcctColDesc_REC" (17, 1, GLAcctDesc_TBL) ;

v_ReturnValue := GlAccountValida-tion_
SC.ping('https://msp8925.us.oracle.com:47032/GlAccountValidationBean/GlAccountVali
dationService?WSDL', 'PolicyA', 'rsbadmin', 'rsbadminl', 'Hi from prantor
PolicyA');
DBMS_OUTPUT.PUT_LINE('v_ReturnvValue = ' || v_Returnvalue);

v_ReturnValue := GlAccountValida-tion_
SC.ping('http://blr00abi.idc.oracle.com:47035/GlAccountValidationBean/GlAccountVal
idationService?WSDL', 'PolicyU', '', '', 'Hi from prantor PolicyU');
DBMS_OUTPUT.PUT_LINE('v_Returnvalue = ' || v_Returnvalue);

v_ReturnValue := GlAccountValida-tion_
SC.ping('http://blr00abi.idc.oracle.com:39001/GlAccountValidationBean/GlAccountVal
idationService?WSDL', 'PolicyC', 'rsbuser', 'rsbuserl', 'Hi from prantor
PolicyC');

DBMS_OUTPUT.PUT_LINE('v_ReturnValue = ' || v_Returnvalue);

GLAcctColRef REC := GlAccountValida-tion_
SC.validateGlAccount ('https://msp8925.us.oracle.com:47032/GlAccountValidationBean/
GlAccountValidationService?WSDL', 'PolicyA', 'rsbadmin', 'rsbadminl',
GLAcctColDesc_REC) ;

DBMS_OUTPUT.PUT_LINE('validateGlAccount done.');

END;
END GlAccountValidationClient;
After the procedure is created without any errors, you can run the procedure as

follows:

SET SERVEROUTPUT ON SIZE 500000
CALL dbms_java.set_output (500000) ;
exec GlAccountValidationClient;

12-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Client-Side Setup

PL/SQL Client Setup

Client code for calling Web services can be generated using the PL/SQL consumer
option of the retail-soa-enabler-gui-<version> tool. The generated zip file contains all
the jar files and PL/SQL code required to invoke the web service from PL/SQL. To run
the client, follow the steps required to run PL/SQL consumer.

The following is a sample PL/SQL procedure for calling a secured Web service.

Note: The code below is sample code for invoking the PayTerm
service. When you generate PL/SQL consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location should also be changed appropriately.

create or replace
PROCEDURE wstestClient IS

ref "OBJ_PAYTERMREF" := null ;
objdesc "OBJ_PAYTERMDESC" := null;
wsm varchar2 (100) ;config varchar2 (32000) ;
BEGIN
wsm := 'oracle.webservices.dii.interceptor.pipeline.port.config';
config :='<port-info>
<runtime enabled="security">
<security>
<outbound>
<username-token name="" password=""/>
</outbound>
</security>
</runtime>

</port-info>"' ;
PayTermServiceConsumer.setProperty (wsm, config);

PayTermServiceConsumer.setEndpoint ('http://example.com:7001/PayTermBean/PayTermSer
vice');

PayTermServiceConsumer.setUsername (' <RMS username>') ;
PayTermServiceConsumer.setPassword ('<RMS password>');

ref := "OBJ_PAYTERMREF" ('x','t',null,null,null);

dbms_output .PUT_LINE (PayTermServiceConsumer.getEndPoint ());

dbms_output .PUT_LINE (PayTermServiceConsumer.ping ('TestMessage'));

objdesc := PayTermServiceConsumer.findPayTermDesc (ref) ;
dbms_output.PUT_LINE('Done."');
EXCEPTION

WHEN OTHERS THEN
dbms_output .PUT_LINE (SQLCODE) ;
dbms_output.PUT_LINE (SQLERRM) ;
END;

Web Services Security Setup Guidelines 12-5

Client-Side Setup

12-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

A

Appendix: Installer Screens

This appendix provides step-by-step instructions for installing the Oracle Retail
Service-Oriented Architecture Enabler tool as a Web application in Oracle WebLogic.

Installation as a Web Application in Oracle WebLogic

To install the Oracle Retail Service-Oriented Architecture Enabler tool as a Web
application in Oracle WebLogic, complete these steps.

Deploy the Retail SOA Enabler Application

Using the WebLogic Server Administration Console, complete the following steps:
1. Navigate to the Deployments page:
2. In the left navigation bar, click Lock & Edit. Click Install.

ORACLE Weblog S s G 1 -
Ho frmons (B fmood e 4

Weicame, weblogic | Conecid i1l

Change Canter

Releas Conhgpurmnen

P — Mot iy v e A I Chplys Dok, I you cvac iy depoamment s, ks your a0 Ao Conem AR o i Conkan ot e eyt Oecigton

P

Recantly Uhed Patha:

Carmeat Lacation:

e 2 ey S 7 o renviceistertuce b a2 15.0.0. 0
e

et Cancel

Note: If the application has already been installed, see the section,
"Redeploy the Application."

The Locate deployment to install and prepare for deployment page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui-<version>.war file.

Appendix: Installer Screens A-1

Installation as a Web Application in Oracle WebLogic

3. Upload your file(s).

4. On the Upload a Deployment to the admin server page, use the Browse button to
locate the retail-soa-enabler-gui-<version>.war file in the Deployment Archive.

ORACLE Wablogic Server Administaton Console 1t

Change Censer) Foe Log Out. Prefernces. [Recaed e q Wekome, weblogi | Connected to: rib_domals
iew changes and restarts Feome »Sumeary of Deployments
Mo pencing changes ecit, Cick the Peease | [nstall Application Assistast
Configueation button b alow others 1o edt
the domain. Back Mext | Fnsh | Cancel
Lock & Edit
Upkoad & depleyment £ the Adminlsiratien Server
FBeiease Confgurabion
Cick the Browse bution ok o from which thy e, ek the Neat zepicy the
Do Structare iy
b doman S
* prarcreert Deplayment Archive; Jretail-soa-enableriretail-soa-enabll Browse...
Depioymests S
-servs
A— Upload a deployment plan (this step Is cptional)
£ menpencly A deponet i & 3 con spplene e A desoymest b » e
E-Cagpastis Wil be & drectory of packaged is a Ja Ml See reaned ks o adetional iformaton about depkyment piars.
Deployment Han
. Browse...
Back | | Wext| | [inoh | || cancel
How do L.]
o St ard siop & deployed enterprie
applcation
5. Select the retail-soa-enabler-gui-<version>.war.
ORACLE Wbl Some s cson - .
e Contar 1 ome Lg 0t et [Rt g | Welcone, wibloghc Cornectd i i
View chisges and rstins) -
o g cunge. oot ik e Relame
o The e 152 5w b been s
e doman.
17 el Apphcatar Assistant
R Lt Back | o) | [Foh | | el
Deraia 5 LOCRtE HpicymaR! 12 FILEL IND Bae 120 SapRyEMEL
L et e e ot e, o ppiton module Smctor Bal vou st el Tou P 40 et Phe put of Dhe sgpication dmctony o fe n Pt Puth Tkt
';”m” ot iy v e pts s, spoad o Bl
i ;::m he: Tupoadmenisl-soa-enabler-gur-15.0.0.mar
& Mgy Recestiy Used Fathsc wpload
= Doy
e
Carvent Location: o

C e
©' T ot 15,0, [o)
O I8 et e v
pep——T
T r-oms e oo o]
T ot g s
O B e e o s

6. Click Next and move to Choose targeting style.

DORACLE WebLogic Server adririssation Canscle 12t

Change Cester 1 tome 109 0t Preesences (4 Recond by Q ‘Wekome, weblogh: Comected to: ib_demaln

View changes and restarts

o pending changes e, Clck the Release
‘Configuration betion to alow others 1o el
the domain.

Lock & Edit

Release Configuration

Daomain Structure

=_doman

S Envionment

~Deployments.

+ s
“Securty Resims

H-rteropenabity

Hore > Surmmy of Deploymests
Install Agpllcation Asshtant
Back Mext Fesh Cancel

Choase tarpeting style

Tergets are the servers, chaters,

€N tamet an applcation.
* estall this deployment a5 an apglicaticn
The applcation and &5 components wil be targeted 1o The Same locations. This & the most common usage.
Eastall this deploymest a5 a lbrary
Applcation Ieanes are deployments That are avallabie for other deployments. 1o Share. Libraries shouk! be avallabie on all of the trgets runing theit refenencing applcations.

Back | Ment | Foih | Cancel

A-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

7. Select Install this deployment as an application.

8. Select Deployment Target.

CORACLE weblLogic Servar® Administration Consale

Change Center

View changes and restarts

Ho panding dhinges exst, Chek the Relasss
Certfiguration button to alow ohers i edd the
doemgen.

Lock & Bt

) Home Log Qut Preferences [mecond relp

Hee s Summary of Diployments

Install Apphcation Assstant
[Back | e | | [Fineh] | Concel |

Select deployment targets

Available targets for retail-soa-enabler-gui :

E]Enmserun

[vi-func-artifact-whs- nstance

[ritr-aems-wis-instance

[rib-rms-whs-instance

How do L.

« Sl and Sl & epkay

applcaton

* Configure an Enterprise apploaton

9. Click Next to select security options. Here select the option DD Only: Use only

[rity-sim-wrls-instance

2 Ertararnia [£| Firith |cm

Select the servers andfor dusters to which you want to deploy thes applcation. (You can reconfigure deployment targets later].

roles and policies that are defined in the deployment descriptors.

ORACLE Weblogic Server Admraion Conscle 1

Change Cester 1 v Log 0t P [et 4 Weane, weblogc Coecicic: b doman
View changes and sy o Sy of Deglemmens
Vo pemdng changes et Ok e ieeme: Inttnl Agpicamon Aussrnt.
Confiuration o 0 alow oy b o e
Opnional Settings
e et Yo rfy Bese ST o e s
T
_doman o
= Ewrormert
Doy Wt o e dgyt?
B S
Sensty R e retal-soa-enabler-gai-15.0.0
= erpetity
= Dugeaci Seaty
Wt ety e s T 8 5t i 8 agpcanen’
defined i e
Castom e Ui e ; e
e Castom Rebes 1 Polies: ine sy roes s polces that are deined in e Admisisyation Corsle.
» St g ey et Advinaced: Use b caitom Bedel that you e configured oe Bhe real's conligurtion age.
Source Acoemubilty
* Congon e e iplain
» Trget o e agplcatoe b a v B e te. — e
* Tt e mockles 1 i enteryriee agpRcaer
Sysien Satey A
| Capy this appiicySion ook every arget for me
Fealtof R ey

Note:

Choosing an option other than DD Only can result in

redirection to an error page for the RSE Admin GUI after deployment.

10. Click Next to review your choices. Click Finish.

Appendix: Installer Screens A-3

Installation as a Web Application in Oracle WebLogic

ORACLE Wtoge s s O

Change Center) Fore Lot Pl (5 Rt ey A Welcsme, weblogic Crenerase:rb_domal
iew chaoges and restarts Forse »Sammary of Deplayments.
Mo perg chrges st Ok Peiowe. | 105t Applcation Assistant
Confouraton Suor & dlow o0wrs b et e
dora, Back Ment | Fnish Cascdl
Lock & Edt
= Revew yo ok aod ek P
2 Tt hay
e Aditionsl onfaraton
rib_doman £ L 0 o L
& Enveorert
Dy & s, ke e e epoyment’sconfgertion srees. I
- Services.
Searty hesis. 7 Mo, 1 wil review the configuration later.
- interoperabiity
& Dagests Sy
Deployment: upltdretal-soi-enabier-gu- 1.0 Cwar
Name: retal-np-enatierqu 1800
‘Stagiag Mode: s e it delned by the chosen brges
L] Mode: Usethe e
T 8 gy 5t The e e e R
+ Sartand spa deioyed e b g st DOXey: Lse oy ks
+ Cotgresn
+ Cresie s depioymest p— |""'m
W e |m
® Tt the modules I an enterprise appicaton’ k| i m Cancel

11. Select No, I will review the configuration later.
12. Click Finish to deploy the application.
13. Click Activate Changes to finish the deployment.
ORACLE Welage S s e - S

Chunge Conter 1D v 1250t St 5] 2o e q rcase, webiog|

Hane sSummary of Depleyments

Vi ctasgen and reitata

Ok e ok b 8 St 5 sy sl o Sumzary of Deplayments
orite e o 0man

Contrel Mesiurng
e, et ey B
Sowg 107
State | Heuth Tpe Targets
o (P [e
A | PO | W Aopien
Etmme
ew g
How sl ! o !
Bame |
B i [l il
Cerfper - e st e e
+ Ut] e picn ot
= farre
;] e ot |t
- a Exrpe
st b o e lopiaten | PR
Deskn X s . ttme
01| ® e servce strtce e 1520 ew e
a3 o apication { | e B |
O| # g rsancannues g guasnn en [—
e St =
O | st g 1124 | x| Wepicrten | s
Heat o v Sy
I [0| 2mmanar new s

14. Select the retail-soa-enabler-gui-<version> application. Click Start > Servicing All
Requests.

A-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

ORACLE WeblLogic Server asmssaton Comeie 135 _
Chasge Costr A e 12gue Prefes (5 e i | L4 =
o i ol i e emmmy o Desioraeety
Metsages
ke Lo e s ety i
L1 Semsary of Deglyments
Release Cantguration Coutrel | kg
Deman Srucnsre
e opped,
Deplepnents
* vy
- Semy e
B Snepeatiny
& Doy
Suwing 1151
e (Vo Remwesse |0
Howdsl e (VOB | e e it e,
batat ot pester e Fowenad e
Bt |
ew e
» S0 and g ey emeyrin
wpican rew e mtserer
Hostorth e of e 1 T 1
pe— ew Fni ——
Depioy E18 mades.
bt
ntat ot bz hew | P
Spitem States B [P |
e o g ey ew et dggren | ta-peenordenes
: ::‘ B g T
Owraced 1] e | | B b
Aogratan
| L T
| b (W00 Webigicnen | ihecwntiae-e

15. Next step is to add group and user required to access RSE GUI application. To
create the group, click on Security Realms.

Change Cenber
View changes and restarts

Chck thee Lok G Edt button to modify, add or
deiebe ibems n Bus dommain.

Lok & Bt
Refease Corfigurtion

Domidin Stracture
base_doman
BErvanorment
1-Degloyments
Bi-sarvices
Security Realms
Bi-Entenooerablity

How do L.

gl

Q

it rome Log Out Prethrences] Record Help |
Homa » Summary of Dapioyments »fummary of Sacurty Rxaims >mynesim » Surmmary of Deploymerts »Summany of Security Realms:

Ssummary of Security Realms
A prqunty nosim 5 & contangr for this michanipmg--noduding USErs, GROUDE, BICUnt rois, SE0Uty poboes, and sequnty Drovide
sequnty reaims n a Weblogs Server domain, but onfy one can be set s the default (pctve) reaim.
This Security Flasims page kets aach secunty resim that has been configured i ths Weblogse Server doman. Chdk the name of

¥ Customize this table

Realms (Filtered - More Columns Exist)
Chek the Lock & Fatbuticn in the Change Center 1o activate al the butions on this page.

Mew | | Deiste
Hame o Default Realm
T e e

Mewi | | Dislstn

16. Click on the default realm name and go to Users and Groups tab, and go to

Groups tab.

Appendix: Installer Screens A-5

Installation as a Web Application in Oracle WebLogic

e _domad
BH-Ervronment
i Deployments
B-Senices
""Senuriny Repims
B Inberoperabilty
B-fiagnostics

How da L =

» Manage users and groups
& Creste o
» Modfy groups
* Dalete groups

System Status B
Health of Running Servers

This page chspiays nformation 300U EBCT rouD Tt Nis Deen CoNRgUIed in this SE0LTTY ream.

b Custumize this table
Groups
i) [T
D| Tame & Description
[| admwparretisers AdmnCrannelisers can Broess the somn channel.
[E] T Admregtratos cae v and modfy ol resource attbutes and stavt and S650 Seroers.
1| opTesters AoxTesters ronss.
| crosstemancomeciors CromsomarCanrariis s maks nuar-daman sk fom foregn omars.
[| ceplevers Degiayvers can viw ol ressurce atiuies and depioy acplcatens.
m] | Horitors Moritons cin il and modify al resooroe Bttributes nd perfiorm ooErENoNS ot restriched by roed.
[| Cperasors Operators can view snd mod®y ol resource sttrbutes and perform server Mecyde oparations.,
0| orscesystemcoe Oracie sppicaton saftre systen gros.
E RIS Grou.
altieny] [SERRS

17. Click on New button. In the next page, enter the name of group as
rseAdminGroup. Enter description for the group.

18. Click OK button. The new group gets added.

19. Now go to the Users tab of security realm.

20. Click on New button to create a new user. In the next page, enter username and

password for the new user to be created.

21. Click OK button. The new user gets added.

Settings for myrealm

Configuration Users and Groups

Users Groups

Roles and Polices | Credential Mappings ~ Providers | Migration

This page deplays information about each group that has been configured in ths security reaim,

P Customize this table

Groups

LNew | [Delete
[| name & Description
O | adminchannelusers AdminChannelisers can acoess the admin channel,
[| sdministrators Agmnistrators can view and modify all resource attributes and start and stop servers,
[| AppTesters AppTesters group.
[| crossDomainCannectars CrossDomainConnectors can make inter -domain calls from foreign domains.
[| Deployers Deployers can view all resource attributes and deploy applications.
[| Monitars Moritors can view and modify all rescurce attributes and perform operations nat restricted by roles,
O | operators Operators can view and modify all resaurce attributes and perform server lifecyde operations,
[| oradesystemGroup Cradle application software system group.
[| ribadmnGeoup RIB Group.
O | rseadminGroup Group o access RSE GUT app
| Mew | | Delete

22. Now click on the new user and go to Groups tab of that user.

23. Select the group rseAdminGroup from the Available window and move it to

Chosen window.

A-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

Settings for reeadmin

General | Passwords | Attributes | Groups

Save

IJse this page to configure group membership for this user,

Parent Groups:
Available: Chosen:

|:| AppTesters G |:| rseAdminGroup
|:| CrossDomainConnectors
[] peployers

|:| Monitors

[] operators

[] oracleSystemGroup

[ribAdminGroup -

® o 8 w

Save

24. Click Save button. It will add the newly created user to the group

rseAdminGroup.

This completes the security setup for RSE GUI application. Now if you go to the
RSE GUI login page, you should be able to login using the new user.

Creating the rseAdminGroup

To create the rseAdminGroup, do the following:

1.

o o ~ w N

In WebLogic, click Security Realms.

Click on myrealm and then Users and Groups.

Click on groups and then New.

Enter rseAdminGroup in the name field, leaving the other fields at default.
Click OK.

Add at least one user to the rseAdminGroup group.

Verify the Retail SOA Enabler Web Application

1.

Navigate to the Deployments page.

Appendix: Installer Screens A-7

Installation as a Web Application in Oracle WebLogic

TRACLE st " -

Chang Cotr | e g bt [e L Hrame, weicpd
View changes i restarty e — T — —
wr - I
P
o b
Doman e
.
& et Caomr o tasie
Ersicymests.
e Depymerts
st
Fvaniory vt | g | (Dot | (e [oy
= tagees -
e e hem T [
0| goresee s cve | dox e
0| = g 1108 e | 400 W
LB 0 rgeme S =
[ST—— 0| s pmamrasae e | et
Crtger e =
e g 01| & w1520 e — e
s Ofugy e e
ey =
i 01| 8 v e 520 = | p—
enm 0| & e st i ap T3 . mlnw
frtem it 0| 2 g ebtreatengmgs s l LT e]
Sy [T -
o
o e
e e [P0 5P e
p—
b, T
I e v g
] E Y e [P | e
- 0| 2gtmar [e [P | e -

2. On the Summary of Deployments screen, locate retail-soa-enabler-gui-<version>.

3. Click retail-soa-enabler-gui-<version> to view settings for the
retail-soa-enabler-gui.

PBRACLE WeblogieServe mssioncos = _—
Cage Comer Bl v Lagnn s [o e A Wetome, bl Corvmtet i 1D seid
(i S e T
s i e
Omrden Copmtie g eosty | Mo Cmd b Momwg | Rem
ok B
=
[p—
ronreal it e 3 st o 4
pen——
e - Pre— S f o e . e s
S
Sty [T e e g 448 ot v o gt ey et e
has: 1 PR » o
Sesepmess Fan. e e R — -
Sagog Motk: et et s e . .
o g e, Moy =
- Lrpr—— et i) Sorctesshetor o e
[T PSP ————— Y
T Sty dei: ooy e i ot o T et e s Yo
ot ot
+ eyt £ Oewerment orve: 0 0 e o e e B 1 e Dt i e . Mot
+ Mo s s e
]St Fiscoal base: § s etz 5 e
ey 8| 1 e 1 T e o 4 P A 0 O B
i R L, 8 A 2 e B
T o spoces e e
| rame Woswes s Comgastats
| Omal iy Suwg L1 10t s | bt
p— :\ 1
I e = e
wan = i v
— T eorn
s i
e
Suweg 81011 s | e
u u =

4. Select the Testing tab.

A-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

ORACLE Weblogic Server Adminisyaton Console 128

Change Center B Home Log Ot Prefemerces [el

View chinges and esturts e > sy o Dighoyrents »retasod-esabler g 15.0.0
Ok the Lock & B8 bumon to modf add o | SEUgS foe retal-soa-snabler-gul-15.0.0

delete tems in this domain.

Cvendew DeploymentPan Coslguation Secufy Tapets Control Testing Mendorng otes

Wekome, weblogie | Connected to: rib_domal

Use this page to test ployment of seccessil
Damals Stracture I you setect Aty Tool Ink, your I
& doma
S Ervonnat Deployment Tests
Oeployments Stowhg 1101 of 1 Prevous | Neat
B-Senvices: - = T
Securty Reaims. Hame Test Peint Comments]
S-nteroperabity
: - rader. 8
(e et eaksoa-enabiergu- 15000 5D | Welcome e findex s on server re-senver
defaut b,

Jretabsoa-enabler-gu15.00 Defaukt url on senver re-senver]

Showng 1o 1of 1 Previous | Next

5. Click the index.jsp URL in the Test Point.

6. The URL should open to the login screen for the Retail Service-Oriented

Architecture Enabler Home page.

ORACLE’
Sign in to Retail SOA Enabler
Username
Password

7. Enter the credentials created in Creating the rseAdminGroup section.

The RSE home page is displayed.
ORACLE’
Retail SOA Enabler

Home | Senace Prowder Serace Cossymw

Tha Retad Serace Enabier 120l (RSE) m detagned 19 Create the dppropnate Prouder wed senace end-ponts mnd the Consumer chents for wed serace prowders 33 wel 3 templates for th
g the AP tempiates apgropnate for the type of senace, 2 Prowder or 2 Consume, for the technology selected, PUSQL o Joa

For addtonal datals please soe the RSE User Gude
To create Prowder Seraces . Select Serace Prowder Tab

To create Consume Seruces, Select Sernce Consumer Tab

Home = Sewce Prowder Serce Congumr

8. The installation is complete. See Chapter 4, "User Interface Usage."

Appendix: Installer Screens A-9

Installation as a Web Application in Oracle WebLogic

Redeploy the Application

If the retail-soa-enabler-gui-<version> application has already been deployed, follow
these steps:

1. If the retail-soa-enabler-gui-<version> application is running, select Stop and
When Work Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

CRACLE WebLogic Server adminisiraton Corace T

Change Canter 1 vome Log Ot Pretewnces [e ap L& I
e s e s Sumeey o Deglarments
ek e Lock & B8 buton 1 oyt or | | SRRy of Deplopments
e e iy D o,
Control Monkoreg
Leck & Edt.
= oy 8 of o B8 mpations . b ot e e, dnpped, st {cephayed], or e from e o by s sscting e appic
o cont o1 056 Pt
Domain Strstan
e — T Pl o o of P i SeployPent 12 QRS I s cormain, Chek the sl bution
trumrret
Depiyments Customize s tabe
= sarvoes.
Secasty s Duploymants
- ittty
- Dgpoetics stal | [Seowing 10 71
e St Heuth | Type T
0 | gethemce ranscsonar e Vo AemiServe, sttt geatorsrve, iy, Postuby-srv,
¢ st s, prgps-deve S, .
= 11104) F AeminSiarian, WG Gt e Ghena Dashety e
 gI0M hpplcaion [12.1.3.01) et | VO | menppcaton | i i
Eritie
How 8o L.. = e L] picuen | T
+ Intal in esbeprie pphcaton - 1500 Entepine
: 3 e 15.0.0 L ottty arar
+ Contgue i entmpese oicatee Lurcie
» Lpdime {sceplo) in et applcation 01| = pmsesecerite s 15,00 e ol)
» St and s deployed i T
cator Ol &m 1500, Exterpiee
i E [pwcmie 1S 00 ew ot | P
» Mok P oo of . wiwpes . -
picton O | & pppawossmagpersnice 1500 e R | peran
» Digioy EI8 recies ui 1 .
* Il et ipplicaties 0 | & pplsenice iace et 15,00 fiew . Pt
Foplaton
——— B g g 1500 fow
s of Raving Sarrs ® g it g 1540 it (¥ O | e dppication | ne-sever
| Faled 1) | = Ertaptse
L e et
[i] Hepleaten

2. Click Lock & Edit and select the required application
retail-soa-enabler-gui-<version> and then click Delete.

ORACLE WebLogic Server sministration Comaie 13z

Chnge Center | o Log Ot et [Moo Hep q, Welczme, wethogh
| - - -
Wiew changes ind restarts Home s Sumanny o Depleymencs
Hessges
Furuing changes e, They st o0
vt o e et of Soece Depioyraents were detec.
o Actate Chnges o Yo must) vt e pencing changes B Commi i, e o Lpsties, b T e sysen.
Unds Al Changes Saresary of Diphaymants
| | [k | Wty
Domain Structare |
o
Emirnt it of o EE it coman, Fetaled gpicatons ;g |, Sopped,
Deployments e ko 1 D page.
#tanvem
Sty ok o ka1 e ppicaion o o 0k o ol e,
& manpbity
e Customizn s ke
Dapiaraecs
il [Update | | Delete | | [State | Simpe Soatg 101
hamy Sae | Kty | Tpe | gets
o T Ao B, (e Doy
] tot
How 83 L. L .< .i':-t l\so.umm o
Py — 0| % g o0 sppicason 12110 atw (x| W I W e
et et pphcaten /00 dpplcaton) o | W sppicaion rvm mﬁm.m
+ Contigem an ntrpese pication T — 4 3
Em Entapes
+ Uptste gy n ntprise sppication) - i |
* Suntaed g e T 1
penen i E s apate 1300 ew Rty
 Mosityr the Fodele of i entepene 1 i
pra—— S w15 0.0 . m fro—.
» Depioy £ mecies 7
» Insal Wt appication =\t o pplin, | P——
o 1580 Entapee
% pioaspperenice 15,00 ew [—
Sysien Sttes | = | |
et o R Serer (=] T er—" few Pl T
v i ppicen [P

3. Click Activate Changes.

A-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

ORACLE itk o smvse e |

[1 o Lot Pt e | (o] [——
[e ity f Sptets
T wee
EoTur———
Lk o Sy o [epiymerts
Brieww Carfqewer Corel Mortreg
Comun Sracher
e
ity
& Srn
e
[l
 Dupuntcs
Sowrg | DTS e e
| e 1 | Dot o
ke | .MM = -
—— T
e B =
e e #x miman | |s
[T —— - e | L]
Jr—— i
« it | e ;-| e e |n
e
. - - -
- ! e R
+ S e [| o [=
o e +
L -ml_ e t]
S 1 1 T
o] o= e [=

4. The retail-soa-enabler-gui-<version> should now not show on the Summary of
Deployment screen.

IRACLE WebLogie Server simmatraon Corac 13

s Coter 1 o Ly Pt 5 e e | (& | =
Vi chinges s et o iy epement z =
wag
L
oty 1 o e e e e,
i o ey
Areme rtgens o My
soman e
[
* Evrseer
s
et s
]
& Dagromcy
S 0T Pous
| v 10 [i
Ll e i -
|
= ind il il s
| S— hewey
- - P -
[mrEe— feezn
e o B e -
|
: - e ™
. ! g
e :"l e | =
. L .""""
e e [-
oeen st [
e e s | [e =
Wty - D — ™
cam e
e 1 - | Ferie= |mw =
gl 19]%& e W | =
I | I
| e
:-l o |-w-- -
e e
o £ -
i | [e =
L
e el -

Appendix: Installer Screens A-11

Installation as a Web Application in Oracle WebLogic

A-12 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Appendix: Sample
ServiceProviderDefLibrary.xml

The sample below can be used as an initial template.

ServiceProviderDefLibrary.xmi

<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/vl

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="Supplier"><!-- Noun, don't put suffix Service -->
<documentation />
<operation name="create"><!-- Verb -->

<documentation>Create a new
SupplierDesc.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->

<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the newly
created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is
"soap:Client" side
message problem.
</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the object
already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>

Throw this exception when there is

Appendix: Sample ServiceProviderDefLibrary.xml B-1

ServiceProviderDefLibrary.xml

unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>
<operation name="createSupSiteUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->

<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the
newly created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is
"soap:Client" side
message problem.
</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the
object already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>
Throw this exception when there
is unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>
<operation name="createSupSiteAddrUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->
<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the
newly created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is

B-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

ServiceProviderDefLibrary.xm|

"soap:Client" side
message problem.

</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the
object already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>
Throw this exception when there is
unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>

<operation name="update">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteOrgUnitUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />

<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteAddrUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">
<input type="SupplierRef" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

Appendix: Sample ServiceProviderDefLibrary.xml B-3

RestServiceProviderDefLibrary.xml

faultType="EntityNotFoundWSFaultException"

/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">
<input type="SupplierRef" />
<output type="SupplierRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="create">
<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault faultType="EntityAlreadyExistsWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="update">
<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">
<input type="SupplierCollectionRef" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">
<input type="SupplierCollectionRef" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
</service>

</serviceProviderDefLibrary>

RestServiceProviderDefLibrary.xml
Following is a sample service definition xml for REST services:

<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/vl

B-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

RestServiceProviderDefLibrary.xml

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<service name="Suppliers">
<operation name="find" operationType="READ_WITH_IDENTITY"
suffix="outputType">
<input type="Nothing" identifierNameList="sup_xref_key, supplier_id"/>
<output type="SupplierDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="create" operationType="CREATE">

<input type="SupplierDesc" identifierNameList="sup_xref_key, supplier_

id"/>
<output type="SupplierRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>

<operation name="update" operationType="UPDATE">

<input type="SupplierDesc" identifierNameList="sup_xref_key, supplier_

id"/>
<output type="Nothing">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="delete" operationType="DELETE">

<input type="SupplierDesc" identifierNameList="sup_xref_key, supplier_

id"/>
<output type="Nothing">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="searchAll" operationType="READ_WITH_PREDICATE"
suffix="outputType">
<input type="Nothing" queryParamList="country_id"/>
<output type="SupplierColDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="createAll" operationType="CREATE">
<input type="SupplierColDesc"/>
<output type="SupplierColRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="updateAll" operationType="UPDATE">
<input type="SupplierColDesc"/>
<output type="Nothing">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="deleteAll" operationType="DELETE">
<input type="SupplierColDesc" queryParamList="country_id"/>
<output type="Nothing">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
</service>

<service name="PayTerm">

<operation name="find" operationType="READ_WITH_IDENTITY"
suffix="outputType">

Appendix: Sample ServiceProviderDefLibrary.xml

B-5

RestServiceProviderDefLibrary.xml

<input type="PayTermRef" identifierNameList="terms_xref_key, terms"/>
<output type="PayTermDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />

</operation>

<operation name="calculateTotal" operationType="PROCESS">

<input type="PayTermDesc" />
<output type="PayTermRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />

</operation>

</service>
<service name="CustOrdItm">
<operation name="find" operationType="READ_WITH_IDENTITY"
suffix="outputType">

<input type="ReferenceId" identifierNameList="id"/>
<output type="CustOrdItmPkVo">
</output>
<fault faultType="IllegalArgumentWSFaultException" />

</operation>

<operation name="create" operationType="CREATE">
<input type="CustOrdItmPkVo"/>
<output type="ReferenceId">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
<operation name="taxLines" operationType="NAVIGATE_TO_CHILD">
<input type="Nothing" queryParamlList="tax_id"/>
<output type="TaxLinePkColVo">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
</service>
<service name="Customers">
<operation name="searchAll" operationType="READ_WITH_ PREDICATE"
suf-fix="outputType">
<input type="Nothing" queryParamList="customer_type"/>
<output type="CustomerColDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />
</operation>
</service>
</serviceProviderDefLibrary>

B-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

C

Appendix: Creating a JDBC Data Source

Procedure

This section describes the steps required to create a JDBC data source.

To create a JDBC data source, complete the following steps.

1.

10.

11.

Log in to the WebLogic administration console. Use this URL:
http:/ / <host>:<listen port>/console/login/LoginForm.jsp.

Navigate the domain structure tree to Services/Data Sources.

Click New to create the new data source. Enter the following required
information.

= Name: Select any name for the data source,

= JNDI name: This field must be set to jdbc/RetailWebServiceDs. The generated
code for the service uses this JNDI name to look up the data source.

Select the transaction options for the data source. Click Next.
Enter the database name and user information for the data source. Click Next.

The connection information for the data source is displayed. Click Test
Configuration to ensure the connection information is correct. If the information is
correct, the following message is displayed: “Connection test succeeded.”

Click Next. Select a server to which to deploy the data source. (This step is not
required at this point in the procedure if you want to deploy the data source to a
server at a later time.)

Click Finish to complete the data source setup. The data sources page is displayed,
including the new data source.

Click the new data source to see the properties page. A default connection pool is
created for the data source. Click the Connection Pool tab to view the connection
pool properties.

The generated JDBC connection URL for the data source is displayed in the
following format:

jdbc:oracle:thin:@<hostname>:<port>:<sid>
(jdbc:oracle:thin:@<hostname>:<port>/<sid> for service connections)

For example:

jdbc:oracle:thin:@localhost:1521:0rc
If the database is a RAC database, the URL should be in the following format:

Appendix: Creating a JDBC Data Source C-1

Procedure

12.

13.

jdbc:oracle:thin: @ (DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= <host>) (PORT = <port>)) (ADDRESS = (PROTOCOL = TCP) (HOST = <host>) (PORT =
<port>)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_NAME = <sid>)))

For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= dbhostl.example.com) (PORT = 1521)) (ADDRESS = (PROTOCOL = TCP) (HOST =
dbhostl.example.com) (PORT = 1521)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_
NAME = orcl)))

In the Configuration > Connection Pool tab of the data source, set the following
properties.

= Initial capacity: Set the value to 20 connections. This value should be increased
or decreased based on the expected load on the server.

= Maximum capacity: Set the value to 100 connections. This value should be
increased or decreased based on the expected load on the server.

= Capacity Increment: Set the value to 20 connections. This value should be
increased or decreased based on the expected load on the server.

s Inactive Connection Time-out: This property is available in the advanced
section of the connection pool configuration. Set the value of this property to
60 seconds.

s Remove Infected Connections Enabled: This check box must be unchecked.

Restart the WebLogic instance to reflect the data source changes.

C-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Major Features of the RSE Tool
	Concepts
	What is a Service?
	Oracle Fusion Reference Architecture (OFRA)
	Where Does RSE Fit?

	Technical Specifications
	Supported Operating Systems

	2 Installation and Basic Setup
	Determining the Type of Installation
	Installing as a Standalone Application
	Installation as a Web Application in Oracle WebLogic
	Prerequisites
	Deploy the Retail Service-Oriented Architecture Enabler
	Verify the Retail Service-Oriented Architecture Enabler
	Redeploy the Application

	3 Tool Inputs and Outputs
	Tool Inputs
	ServiceProviderDefLibrary.xml
	RestServiceProviderDefLibrary.xml
	XSDs and retail-public-payload-java-beans.jar
	PL/SQL Oracle Objects
	WSDL

	Tool Outputs
	PL/SQL Provider Web Service
	PL/SQL Consumer using Webservice Call-Out Utility
	PL/SQL Consumer Web Service
	Java EE Provider Web Service
	Java EE Consumer Web Service

	4 Command Line Interface
	Sevice Provider
	Arguments
	Commands
	Service Definition Library XML File
	Service Definition Library XML File for Restful Web Services
	Custom Business Objects Jar File
	Localization Business Object Jar File
	Service Implementation Jar File

	Service Consumer
	Arguments
	Commands

	5 User Interface Usage
	Service Provider
	Service Definition Library XML File
	Service Definition Library XML File for Restful web services
	Custom Business Objects Jar File
	Localization Business Object Jar File
	Service Implementation Jar File

	Service Consumer
	Help

	6 Service Definition Library XML File
	Schema Definition
	serviceProviderDefLibrary

	Managing the Service Definition Library XML File
	Creating the File
	Changing the Version of the File
	Changing the appName Attribute in the File
	Renaming a Service or Operation Name in the File
	Adding a New Service or New Operation to the File
	Deleting a Service or Deleting Operations from the File
	Defining New Exceptions to the Operations
	Using Different Versions of Objects as Input/Output to an Operation

	7 Service Definition Library XML File for Restful services
	Schema Definition
	ServiceProviderDefLibrary
	Validation rules for a service definition xml for RESTful web services
	Rules for Application Name Field
	Rules for Service Name Field
	Rules for Service Operations
	Rules for Path Parameters
	Rules for Query Parameters
	Rules for Links
	Rules for RelatedTo element
	JSON output
	Response Codes

	8 Web Service Standards and Conventions
	Web Service Naming
	Web Service Versioning

	9 Creating the Java EE Implementation Jar
	Step 1: Generate Web Services with Default Implementation
	Step 2: Implement Interfaces
	Step 3: Upload the jar

	10 Implementation Guidelines
	Important Note About this Chapter
	PL/SQL Service Consumer Implementation Notes
	PL/SQL Provider Service Implementation Notes
	Java EE Service Consumer Implementation Notes
	Sample Client Code

	Java EE Service Provider Implementation Notes
	Use Case 1: Complete the Generator Provided Stub Code Implementation
	Use Case 2: Provide a Custom impl jar to the RSE Tool
	Use Case 3: Package the Generated Service Classes in an Existing Application

	Web Service Call as a Remote EJB Call
	Prerequisites
	Procedure
	Code Description

	Web Service Call as a POJO Call
	Procedure
	Sample Code for POJO Invocation

	Deploying the Web Service
	Redeploy the Service Application
	Verify the Service Application Installation Using the Administration Console

	Creating a JDBC Data Source

	11 Implementation Guidelines
	Important Note About this Chapter
	PL/SQL Consumer using Web Service Call-Out Utility Implementation Notes
	Install Oracle JVM Web Services Call-Out Utility

	PL/SQL Provider Service Implementation Notes
	Java EE Service Provider Implementation Notes
	Use Case 1: Complete the Generator Provided Stub Code Implementation
	Use Case 2: Provide a Custom impl jar to the RSE Tool
	Use Case 3: Package the Generated Service Classes in an Existing Application

	Deploying the Web Service
	Creating a JDBC Data Source in WebLogic

	12 Web Services Security Setup Guidelines
	Client-Side Setup
	Java Client Setup
	PL/SQL Client Setup for WS with Call-out
	PL/SQL Client Setup

	A Appendix: Installer Screens
	Installation as a Web Application in Oracle WebLogic
	Deploy the Retail SOA Enabler Application
	Creating the rseAdminGroup
	Verify the Retail SOA Enabler Web Application
	Redeploy the Application

	B Appendix: Sample ServiceProviderDefLibrary.xml
	ServiceProviderDefLibrary.xml
	RestServiceProviderDefLibrary.xml

	C Appendix: Creating a JDBC Data Source
	Procedure

